Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://doi.org/10.21256/zhaw-1984
Publikationstyp: Beitrag in wissenschaftlicher Zeitschrift
Art der Begutachtung: Peer review (Publikation)
Titel: Electrothermal simulation of large-area semiconductor devices
Autor/-in: Kirsch, Christoph
Altazin, Stéphane
Hiestand, Roman
Beierlein, Tilman
Ferrini, Rolando
Offermans, Ton
Pennick, L.
Ruhstaller, Beat
DOI: 10.21256/zhaw-1984
10.21152/1750-9548.11.2.127
Erschienen in: The International Journal of Multiphysics
Band(Heft): 11
Heft: 2
Seite(n): 127
Seiten bis: 136
Erscheinungsdatum: 2017
Verlag / Hrsg. Institution: International Society of Multiphysics
ISSN: 1750-9548
2048-3961
Sprache: Englisch
Fachgebiet (DDC): 621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnik
Zusammenfassung: The lateral charge transport in thin-film semiconductor devices is affected by the sheet resistance of the various layers. This may lead to a non-uniform current distribution across a large-area device resulting in inhomogeneous luminance, for example, as observed in organic light-emitting diodes. The resistive loss in electrical energy is converted into thermal energy via Joule heating, which results in a temperature increase inside the device. On the other hand, the charge transport properties of the device materials are also temperature-dependent, such that we are facing a two-way coupled electrothermal problem. It has been demonstrated that adding thermal effects to an electrical model significantly changes the results. We present a mathematical model for the steady-state distribution of the electric potential and of the temperature across one electrode of a large-area semiconductor device, as well as numerical solutions obtained using the finite element method.
URI: https://digitalcollection.zhaw.ch/handle/11475/6805
Volltext Version: Publizierte Version
Lizenz (gemäss Verlagsvertrag): CC BY 4.0: Namensnennung 4.0 International
Departement: Life Sciences und Facility Management
Organisationseinheit: Institute of Computational Physics (ICP)
Enthalten in den Sammlungen:Publikationen Life Sciences und Facility Management

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
2017_Kirsch_Eletrothermal Simulation_Journal Multiphysics.pdf480.83 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen
Zur Langanzeige
Kirsch, C., Altazin, S., Hiestand, R., Beierlein, T., Ferrini, R., Offermans, T., Pennick, L., & Ruhstaller, B. (2017). Electrothermal simulation of large-area semiconductor devices. The International Journal of Multiphysics, 11(2), 127–136. https://doi.org/10.21256/zhaw-1984
Kirsch, C. et al. (2017) ‘Electrothermal simulation of large-area semiconductor devices’, The International Journal of Multiphysics, 11(2), pp. 127–136. Available at: https://doi.org/10.21256/zhaw-1984.
C. Kirsch et al., “Electrothermal simulation of large-area semiconductor devices,” The International Journal of Multiphysics, vol. 11, no. 2, pp. 127–136, 2017, doi: 10.21256/zhaw-1984.
KIRSCH, Christoph, Stéphane ALTAZIN, Roman HIESTAND, Tilman BEIERLEIN, Rolando FERRINI, Ton OFFERMANS, L. PENNICK und Beat RUHSTALLER, 2017. Electrothermal simulation of large-area semiconductor devices. The International Journal of Multiphysics. 2017. Bd. 11, Nr. 2, S. 127–136. DOI 10.21256/zhaw-1984
Kirsch, Christoph, Stéphane Altazin, Roman Hiestand, Tilman Beierlein, Rolando Ferrini, Ton Offermans, L. Pennick, and Beat Ruhstaller. 2017. “Electrothermal Simulation of Large-Area Semiconductor Devices.” The International Journal of Multiphysics 11 (2): 127–36. https://doi.org/10.21256/zhaw-1984.
Kirsch, Christoph, et al. “Electrothermal Simulation of Large-Area Semiconductor Devices.” The International Journal of Multiphysics, vol. 11, no. 2, 2017, pp. 127–36, https://doi.org/10.21256/zhaw-1984.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.