Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-3694
Publication type: Article in scientific journal
Type of review: Peer review (publication)
Title: Model based analysis of forced and natural convection effects in an electrochemical cell
Authors: Brunner, Daniel
Boldrini, Marlon
Boiger, Gernot Kurt
DOI: 10.21256/zhaw-3694
10.21152/1750-9548.11.1.97
Published in: The International Journal of Multiphysics
Volume(Issue): 11
Issue: 1
Page(s): 97
Pages to: 111
Issue Date: 2017
Publisher / Ed. Institution: International Society of Multiphysics
ISSN: 1750-9548
2048-3961
Language: German
Subjects: OpenFoam; Electrolysis; CFD; Copper raffination
Subject (DDC): 540: Chemistry
Abstract: High purity copper, suitable for electrical applications, can only be obtained by electro-winning. The hallmark of this process is its self-induced natural convection through density variations of the electrolyte at both anode and cathode. In order to accelerate the process, first its full dynamic complexity needs to be understood. Thus, an OpenFoamĀ®-based 2D model has been created. This finite-volume multiphysics approach solves the laminar momentum and copper-ion species conservation equations, as well as local copper-ion conversion kinetics. It uses a Boussinesq approximation to simulate the species-momentum coupling, namely natural draft forces induced by variations of the spatial copper concentration within the fluid. The model shows good agreement with benchmark-cases of real-life electrochemical cells found in literature. An additional flow was imposed at the bottom of a small-scale electrochemical cell in order to increase the ionic transport and thereby increase the overall performance of the cell. In a small-scale electrochemical cell in strictly laminar flow, the overall performance could be increased and stratification decreased.
URI: https://digitalcollection.zhaw.ch/handle/11475/6199
Fulltext version: Published version
License (according to publishing contract): CC BY 4.0: Attribution 4.0 International
Departement: School of Engineering
Organisational Unit: Institute of Computational Physics (ICP)
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
Model based analysis of forced and natural convection effects in an electrochemical cell.pdf748.78 kBAdobe PDFThumbnail
View/Open
Show full item record
Brunner, D., Boldrini, M., & Boiger, G. K. (2017). Model based analysis of forced and natural convection effects in an electrochemical cell. The International Journal of Multiphysics, 11(1), 97–111. https://doi.org/10.21256/zhaw-3694
Brunner, D., Boldrini, M. and Boiger, G.K. (2017) ‘Model based analysis of forced and natural convection effects in an electrochemical cell’, The International Journal of Multiphysics, 11(1), pp. 97–111. Available at: https://doi.org/10.21256/zhaw-3694.
D. Brunner, M. Boldrini, and G. K. Boiger, “Model based analysis of forced and natural convection effects in an electrochemical cell,” The International Journal of Multiphysics, vol. 11, no. 1, pp. 97–111, 2017, doi: 10.21256/zhaw-3694.
BRUNNER, Daniel, Marlon BOLDRINI und Gernot Kurt BOIGER, 2017. Model based analysis of forced and natural convection effects in an electrochemical cell. The International Journal of Multiphysics. 2017. Bd. 11, Nr. 1, S. 97–111. DOI 10.21256/zhaw-3694
Brunner, Daniel, Marlon Boldrini, and Gernot Kurt Boiger. 2017. “Model based analysis of forced and natural convection effects in an electrochemical cell.” The International Journal of Multiphysics 11 (1): 97–111. https://doi.org/10.21256/zhaw-3694.
Brunner, Daniel, et al. “Model based analysis of forced and natural convection effects in an electrochemical cell.” The International Journal of Multiphysics, vol. 11, no. 1, 2017, pp. 97–111, https://doi.org/10.21256/zhaw-3694.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.