Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-29323
Publication type: Article in scientific journal
Type of review: Peer review (publication)
Title: Automated shape and process parameter optimization for scaling up geometrically non-similar bioreactors
Authors: Seidel, Stefan
Mozaffari, Fruhar
Maschke, Rüdiger W.
Kraume, Matthias
Eibl-Schindler, Regine
Eibl, Dieter
et. al: No
DOI: 10.3390/pr11092703
10.21256/zhaw-29323
Published in: Processes
Volume(Issue): 11
Issue: 9
Page(s): 2703
Issue Date: Sep-2023
Publisher / Ed. Institution: MDPI
ISSN: 2227-9717
Language: English
Subjects: Biochemical engineering; Scale-up; Optimization; Open-source; Kolmogorov length scale; Hydrodynamic stress; Energy dissipation rate; HEK293; Computational fluid dynamics (CFD)
Subject (DDC): 660: Chemical engineering
Abstract: Scaling bioprocesses remains a major challenge. Since it is physically impossible to increase all process parameters equally, a suitable scale-up strategy must be selected for a successful bioprocess. One of the most widely used criteria when scaling up bioprocesses is the specific power input. However, this represents only an average value. This study aims to determine the Kolmogorov length scale distribution by means of computational fluid dynamics (CFD) and to use it as an alternative scale-up criterion for geometrically non-similar bioreactors for the first time. In order to obtain a comparable Kolmogorov length scale distribution, an automated geometry and process parameter optimization was carried out using the open-source tools OpenFOAM and DAKOTA. The Kolmogorov–Smirnov test statistic was used for optimization. A HEK293-F cell expansion (batch mode) from benchtop (Infors Minifors 2 with 4 L working volume) to pilot scale (D-DCU from Sartorius with 30 L working volume) was carried out. As a reference cultivation, the classical scale-up approach with constant specific power input (233 W m−3) was used, where a maximum viable cell density (VCDmaxmax) of 5.02·1065.02·106 cells mL−1 was achieved (VCDmaxmax at laboratory scale 5.77·1065.77·106 cells mL−1). Through the automated optimization of the stirrer geometry (three parameters), position and speed, comparable cultivation results were achieved as in the small scale with a maximum VCD of 5.60·1065.60·106 cells mL−1. In addition, even on the pilot scale, cell aggregate size distribution was seen to strictly follow a geometric distribution and can be predicted with the help of CFD with the previously published correlation.
URI: https://digitalcollection.zhaw.ch/handle/11475/29323
Related research data: https://github.com/seideste/Automated-shape-and-process-parameter-optimization
Fulltext version: Published version
License (according to publishing contract): CC BY 4.0: Attribution 4.0 International
Departement: Life Sciences and Facility Management
Organisational Unit: Institute of Chemistry and Biotechnology (ICBT)
Appears in collections:Publikationen Life Sciences und Facility Management

Files in This Item:
File Description SizeFormat 
2023_Seidl-etal_Automated-parameter-optimization-for-bioreactorsprocesses_MDPI.pdf13.07 MBAdobe PDFThumbnail
View/Open
Show full item record
Seidel, S., Mozaffari, F., Maschke, R. W., Kraume, M., Eibl-Schindler, R., & Eibl, D. (2023). Automated shape and process parameter optimization for scaling up geometrically non-similar bioreactors. Processes, 11(9), 2703. https://doi.org/10.3390/pr11092703
Seidel, S. et al. (2023) ‘Automated shape and process parameter optimization for scaling up geometrically non-similar bioreactors’, Processes, 11(9), p. 2703. Available at: https://doi.org/10.3390/pr11092703.
S. Seidel, F. Mozaffari, R. W. Maschke, M. Kraume, R. Eibl-Schindler, and D. Eibl, “Automated shape and process parameter optimization for scaling up geometrically non-similar bioreactors,” Processes, vol. 11, no. 9, p. 2703, Sep. 2023, doi: 10.3390/pr11092703.
SEIDEL, Stefan, Fruhar MOZAFFARI, Rüdiger W. MASCHKE, Matthias KRAUME, Regine EIBL-SCHINDLER und Dieter EIBL, 2023. Automated shape and process parameter optimization for scaling up geometrically non-similar bioreactors. Processes. September 2023. Bd. 11, Nr. 9, S. 2703. DOI 10.3390/pr11092703
Seidel, Stefan, Fruhar Mozaffari, Rüdiger W. Maschke, Matthias Kraume, Regine Eibl-Schindler, and Dieter Eibl. 2023. “Automated Shape and Process Parameter Optimization for Scaling up Geometrically Non-Similar Bioreactors.” Processes 11 (9): 2703. https://doi.org/10.3390/pr11092703.
Seidel, Stefan, et al. “Automated Shape and Process Parameter Optimization for Scaling up Geometrically Non-Similar Bioreactors.” Processes, vol. 11, no. 9, Sept. 2023, p. 2703, https://doi.org/10.3390/pr11092703.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.