Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-28464
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUlzega, Simone-
dc.contributor.authorAlbert, Carlo-
dc.date.accessioned2023-08-18T12:33:43Z-
dc.date.available2023-08-18T12:33:43Z-
dc.date.issued2023-
dc.identifier.issn1027-5606de_CH
dc.identifier.issn1607-7938de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/28464-
dc.description.abstractStochastic models in hydrology are very useful and widespread tools for making reliable probabilistic predictions. However, such models are only accurate at making predictions if model parameters are first of all calibrated to measured data in a consistent framework such as the Bayesian one, in which knowledge about model parameters is described through probability distributions. Unfortunately, Bayesian parameter calibration, a. k. a. inference, with stochastic models, is often a computationally intractable problem with traditional inference algorithms, such as the Metropolis algorithm, due to the expensive likelihood functions. Therefore, the prohibitive computational cost is often overcome by employing over-simplified error models, which leads to biased parameter estimates and unreliable predictions. However, thanks to recent advancements in algorithms and computing power, fully fledged Bayesian inference with stochastic models is no longer off-limits for hydrological applications. Our goal in this work is to demonstrate that a computationally efficient Hamiltonian Monte Carlo algorithm with a timescale separation makes Bayesian parameter inference with stochastic models feasible. Hydrology can potentially take great advantage of this powerful data-driven inference method as a sound calibration of model parameters is essential for making robust probabilistic predictions, which can certainly be useful in planning and policy-making. We demonstrate the Hamiltonian Monte Carlo approach by detailing a case study from urban hydrology. Discussing specific hydrological models or systems is outside the scope of our present work and will be the focus of further studies.de_CH
dc.language.isoende_CH
dc.publisherCopernicusde_CH
dc.relation.ispartofHydrology and Earth System Sciencesde_CH
dc.rightshttps://creativecommons.org/licenses/by/4.0/de_CH
dc.subjectBayesian inferencede_CH
dc.subjectStochastic modelde_CH
dc.subjectHamiltonian Monte Carlode_CH
dc.subjectEnvironmental sciencesde_CH
dc.subject.ddc510: Mathematikde_CH
dc.subject.ddc551: Geologie und Hydrologiede_CH
dc.titleBayesian parameter inference in hydrological modelling using a Hamiltonian Monte Carlo approach with a stochastic rain modelde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementLife Sciences und Facility Managementde_CH
zhaw.organisationalunitInstitut für Computational Life Sciences (ICLS)de_CH
dc.identifier.doi10.5194/hess-27-2935-2023de_CH
dc.identifier.doi10.21256/zhaw-28464-
zhaw.funding.euNode_CH
zhaw.issue15de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end2950de_CH
zhaw.pages.start2935de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume27de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.funding.snf169295de_CH
zhaw.webfeedBiomedical Simulationde_CH
zhaw.webfeedHigh Performance Computing (HPC)de_CH
zhaw.funding.zhawBISTOM - Bayesian Inference with Stochastic Modelsde_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
zhaw.relation.referenceshttps://github.com/ulzegasi/HMC_SIPde_CH
Appears in collections:Publikationen Life Sciences und Facility Management

Files in This Item:
File Description SizeFormat 
2023_Ulzega-Albert_Bayesian-parameter-inference-in-hydrological-modelling_HESS.pdf5.32 MBAdobe PDFThumbnail
View/Open
Show simple item record
Ulzega, S., & Albert, C. (2023). Bayesian parameter inference in hydrological modelling using a Hamiltonian Monte Carlo approach with a stochastic rain model. Hydrology and Earth System Sciences, 27(15), 2935–2950. https://doi.org/10.5194/hess-27-2935-2023
Ulzega, S. and Albert, C. (2023) ‘Bayesian parameter inference in hydrological modelling using a Hamiltonian Monte Carlo approach with a stochastic rain model’, Hydrology and Earth System Sciences, 27(15), pp. 2935–2950. Available at: https://doi.org/10.5194/hess-27-2935-2023.
S. Ulzega and C. Albert, “Bayesian parameter inference in hydrological modelling using a Hamiltonian Monte Carlo approach with a stochastic rain model,” Hydrology and Earth System Sciences, vol. 27, no. 15, pp. 2935–2950, 2023, doi: 10.5194/hess-27-2935-2023.
ULZEGA, Simone und Carlo ALBERT, 2023. Bayesian parameter inference in hydrological modelling using a Hamiltonian Monte Carlo approach with a stochastic rain model. Hydrology and Earth System Sciences. 2023. Bd. 27, Nr. 15, S. 2935–2950. DOI 10.5194/hess-27-2935-2023
Ulzega, Simone, and Carlo Albert. 2023. “Bayesian Parameter Inference in Hydrological Modelling Using a Hamiltonian Monte Carlo Approach with a Stochastic Rain Model.” Hydrology and Earth System Sciences 27 (15): 2935–50. https://doi.org/10.5194/hess-27-2935-2023.
Ulzega, Simone, and Carlo Albert. “Bayesian Parameter Inference in Hydrological Modelling Using a Hamiltonian Monte Carlo Approach with a Stochastic Rain Model.” Hydrology and Earth System Sciences, vol. 27, no. 15, 2023, pp. 2935–50, https://doi.org/10.5194/hess-27-2935-2023.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.