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Abstract. Stochastic models in hydrology are very useful
and widespread tools for making reliable probabilistic pre-
dictions. However, such models are only accurate at mak-
ing predictions if model parameters are first of all cali-
brated to measured data in a consistent framework such as
the Bayesian one, in which knowledge about model param-
eters is described through probability distributions. Unfor-
tunately, Bayesian parameter calibration, a. k. a. inference,
with stochastic models, is often a computationally intractable
problem with traditional inference algorithms, such as the
Metropolis algorithm, due to the expensive likelihood func-
tions. Therefore, the prohibitive computational cost is often
overcome by employing over-simplified error models, which
leads to biased parameter estimates and unreliable predic-
tions. However, thanks to recent advancements in algorithms
and computing power, fully fledged Bayesian inference with
stochastic models is no longer off-limits for hydrological
applications. Our goal in this work is to demonstrate that
a computationally efficient Hamiltonian Monte Carlo algo-
rithm with a timescale separation makes Bayesian parame-
ter inference with stochastic models feasible. Hydrology can
potentially take great advantage of this powerful data-driven
inference method as a sound calibration of model parame-
ters is essential for making robust probabilistic predictions,
which can certainly be useful in planning and policy-making.
We demonstrate the Hamiltonian Monte Carlo approach by
detailing a case study from urban hydrology. Discussing spe-
cific hydrological models or systems is outside the scope of
our present work and will be the focus of further studies.

1 Introduction

A fundamental and highly non-trivial question in many ap-
plied sciences is how to make reliable predictions about the
dynamics of a complex system. In hydrological modelling in
particular, the ability of predicting extreme events like floods
is obviously of paramount importance. Conceptual rainfall-
runoff models that incorporate only a few state variables
and a few system parameters often represent a very prac-
tical and efficient solution for making probabilistic predic-
tions. The basic idea is to describe slow processes occurring
at our observation scale by phenomenological differential
equations and include all other processes as noise. Incorpo-
rating the noise in the model, where it arises, naturally leads
to stochastic differential equation (SDE) models. Model pa-
rameters then need to be calibrated on observed data, usu-
ally provided in the form of noisy time series. The goal of
the calibration process is to determine the parameters that
allow the model to reproduce the observed data and quantify
their uncertainties, expressed as probability distributions. For
this purpose, Bayesian statistics is a consistent framework
where our knowledge about model parameters is described
by probability distributions and learning as a data-driven up-
dating process of prior beliefs. Bayesian inference methods
bear the great advantage over traditional optimization algo-
rithms of providing an uncertainty estimation for the cali-
brated parameters in the form of a probability distribution.
The knowledge of such uncertainty is important for making
probabilistic predictions, which can in turn be a useful tool
for decision-makers. Hydrology could potentially take great
advantage of more realistic stochastic models and a fast and
reliable method for their calibration. However, Bayesian in-
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ference turns out to be computationally very expensive for
non-trivial stochastic models.

Uncertainty in rainfall-runoff hydrological modelling
arises mostly from input errors associated with an inaccu-
rate estimation of the integrated rainfall over a catchment
(Kavetski et al., 2006). These input errors, typically due to
a combination of heterogeneous rainfall, sparse rain-gauge
measurements and insufficient temporal resolution (McMil-
lan et al., 2011; Renard et al., 2011; Ochoa-Rodriguez et al.,
2015), can seriously deteriorate the quality of model cali-
bration results for heavily input-driven hydrological systems
(Bárdossy and Das, 2008). A variety of stochastic weather
generators (Rodriguez-Iturbe et al., 1987; Cowpertwait et al.,
1996; Deidda et al., 1999; Paschalis et al., 2013; Langousis
and Kaleris, 2014) have been proposed to simulate precip-
itation with its uncertainty. Although such weather genera-
tors can provide uncertain inputs to rainfall-runoff models
and therefore reproduce the effect of rainfall errors on runoff
predictive uncertainties, such input uncertainties have been
largely neglected in studies focusing on model parameter in-
ference (Sikorska et al., 2012), probably because of the com-
putational difficulty of including them in a likelihood func-
tion (Honti et al., 2013). Input uncertainties should be in-
cluded directly in the input as a stochastic contribution and
then transported through the model and thereby naturally in-
corporated in the likelihood function describing the proba-
bility distribution of observations given model parameters.
In the Bayesian framework, the sought posterior probabil-
ity distribution for the model parameters is proportional to
the product of the likelihood function and the prior probabil-
ity distribution describing our prior knowledge about model
parameters. However, it is still common practice in hydrol-
ogy, as well as in other applied disciplines, to consider an
over-simplified error model based on likelihood functions
defined as uncorrelated normal distributions centred on the
outputs of a deterministic model (Yang et al., 2008; Re-
ichert and Schuwirth, 2012; Sikorska et al., 2012). This in-
evitably leads to biased parameters and unreliable predic-
tions (Renard et al., 2011; Honti et al., 2013; Del Giudice
et al., 2015). Although so-called rainfall multipliers can mit-
igate this problem (Kavetski et al., 2006; Sun and Bertrand-
Krajewski, 2013), they fail in assessing input uncertainties
when a rainfall event is not detected by the available rain
gauges (Kavetski et al., 2006; Renard et al., 2011).

Del Giudice et al. (2016) proposed a method based on an
input uncertainty model describing the rainfall as a continu-
ous stochastic process. The method is called SIP (acronym
for stochastic input process). The idea of describing selected
model parameters or inputs as stochastic time-dependent pro-
cesses in order to take intrinsic uncertainties realistically into
account in hydrological modelling has gained momentum in
recent years (Tomassini et al., 2009; Reichert and Mieleit-
ner, 2009; Reichert et al., 2021; Bacci et al., 2022). The
SIP technique uses (i) possibly inaccurate rain-gauge precip-
itation data, (ii) runoff data from a flowmeter at the catch-

ment outlet, (iii) a hydrological runoff model, (iv) a rain-
fall model in the form of a transformed stochastic Ornstein–
Uhlenbeck (OU) process, (v) models for rainfall and runoff
observation errors, and (vi) prior distributions, to infer both
the marginal posterior distributions for the parameters of in-
terest and a “true” spatially integrated average rainfall over
the catchment in a Bayesian manner. The SIP method uses
the catchment as an additional rain gauge to gather informa-
tion about a catchment-averaged real rain, which is inferred
from both prior knowledge and observations of rainfall and
runoff. Both the hydrological model describing the catch-
ment dynamics and runoff observations are assumed to be
accurate in comparison to the rainfall data. The inferred rain-
fall pattern can then be used to calibrate the model and sig-
nificantly reduce the bias in the estimated parameters, despite
the inaccuracy of the rainfall data. However, as described in
detail in Del Giudice et al. (2016), the likelihood function
turns out to be a high-dimensional discretized version of an
infinite-dimensional path integral that makes this approach
computationally demanding.

In Albert et al. (2016) we presented an efficient Hamil-
tonian Monte Carlo (HMC)-based algorithm for the calibra-
tion of SDE models on noisy time series. The proposed HMC
method, combining molecular dynamics principles with the
well-known Metropolis algorithm, relies on the reinterpreta-
tion of the Bayesian posterior probability distribution as the
partition function of a statistical mechanics system. This in-
terpretation reduces the parameter inference problem to the
task of simulating the dynamics of a fictitious statistical me-
chanics system, which can be solved in a computationally
efficient way. The dynamics of the statistical mechanics sys-
tem may occur on very different timescales, which can be
exploited by a multiple timescale integration approach. In
Albert et al. (2016), the method was demonstrated using
a simple, albeit general, rainfall-runoff toy model, and we
claimed that the HMC algorithm, combined with the multiple
timescale integration, would be applicable to a wide range of
inference problems, making many SDE models amenable to
a consistent Bayesian parameter inference.

Here we combine the HMC and SIP methods to perform
Bayesian inference with a stochastic input model. We show
that the HMC method can be extended from the toy model
and the smooth synthetic data used in Albert et al. (2016)
to a real-world hydrological case study with real noisy rain-
fall and runoff time series, albeit at the cost of a somewhat
substantial analytical effort. We intentionally use sparse and
inaccurate precipitation data, provided by a rain gauge lo-
cated far away from the catchment area, to demonstrate that a
“true” average rainfall pattern can be reconstructed from the
corresponding runoff data, and we compare the inferred rain
to the more accurate observations obtained from rain gauges
within or very close to the catchment.

The HMC method bears valuable advantages with regard
to both generality and efficiency. Indeed, it is by no means
limited to an OU process, unlike the original SIP approach
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of Del Giudice et al. (2016), which strictly requires a lin-
ear stochastic process as a rain generator. Although in this
study we also opt for an OU process for the sake of simplic-
ity, it should be clear that such a process could be arbitrar-
ily replaced by any other stochastic process, thus giving the
method significantly more flexibility in reproducing the sta-
tistical properties of real rainfall. The HMC method is also
not at all limited to urban hydrology and could be applied for
instance in natural catchment hydrology as well. The specific
case study presented here was chosen to put emphasis on in-
put uncertainties, which often represent the biggest source of
uncertainty in hydrological modelling in general. More infor-
mation on possible hydrological applications can be found in
Del Giudice et al. (2016). Moreover, the HMC algorithm al-
lows us to sample both model parameters and a true averaged
rainfall pattern that are simultaneously compatible with data,
models and prior distributions from the posterior probability
density. This yields very high acceptance rates, even in the
context of expensive high-dimensional problems, with great
benefits in terms of performance and efficiency of the algo-
rithm. Another interesting method from the family of parti-
cle filters to tackle high-dimensional inference problems for
stochastic model calibration is particle Markov chain Monte
Carlo (PMCMC) (Andrieu et al., 2010), which combines
piece-wise forward simulations of the stochastic model with
data-based importance sampling. Like HMC, PMCMC meth-
ods can be applied to any stochastic process, including (un-
like HMC) processes with discrete states (e.g. numbers of or-
ganisms in ecological models). A generally low implementa-
tion effort could be an additional argument in favour of PM-
CMC algorithms, which do not require the differentiation of
the posterior distribution like HMC methods. However, PM-
CMC methods may suffer significantly in terms of efficiency
when compared to an HMC-based approach. A detailed com-
parison, based on the same case study presented here, of dif-
ferent methods for Bayesian inference with stochastic mod-
els, can be found in Bacci et al. (2023). The HMC approach is
very general and suitable for a broad range of applications re-
quiring Bayesian inference with stochastic models. It should
be noted that the method presented here is meant for offline-
calibration of stochastic models, not for real-time updating,
which might be needed in a model-based control setting. For
the latter problem, filtering algorithms might be more appro-
priate, but we do not discuss this topic here. Moreover, HMC
is inherently a MCMC method, and it is therefore embarrass-
ingly parallelizable by breaking it up into an arbitrary num-
ber of independent Markov chains. This makes HMC very
well suited for applications in the big-data regime or with
expensive models.

2 Bayesian inference with a stochastic rain model

The SIP method of Del Giudice et al. (2016) describes the
rain input to a hydrological system based on an unobserved

and continuous stochastic process, the rainfall potential ξ(t).
The latter should not be interpreted as a potential in the phys-
ical sense but rather as a rain generator based on a latent, i.e.
“potential”, stochastic process that can be transformed into
real precipitation P by a suitable empirical transformation
P(t)= r(ξ(t)), which will be addressed below in Sect. 2.1.

The inference process allows us to learn from noisy rain-
fall and runoff time series, P obs and Qobs, respectively; the
parameters θ of the hydrological system; the uncertainties σξ
and σz of both rainfall and runoff observation models, re-
spectively; and the unobserved true rainfall over the catch-
ment expressed as a discretized rainfall potential ξ = {ξi}, to
be interpreted as an evaluation of the stochastic process ξ(t)
at a discrete set of time points ti , with i = 1, . . . ,N .

For this purpose, we subdivide each interval between con-
secutive rain observations into jP bins, yielding a total of
nP jP+1=N discretization points, where nP+1 is the num-
ber of rain observations, that is, the length of the precipitation
time series P obs. Analogously, the system output dimension
is discretized by partitioning the intervals between consecu-
tive runoff observations into jQ sub-intervals, such that the
total number of discretization points is nQjQ+1=N , where
nQ+ 1 is the number of data points in Qobs. The number of
discretization points is thus the same (N) in both rainfall and
runoff dimensions, and it defines the discretization time step
dt = T/(N−1), where T is the total time interval covered by
observations. We will provide numerical values for all these
constants later in Sect. 4. Here, suffice it to say that the only
important requirement of the method is that the total number
N of discretization points is large enough compared to the
number of measurement points, nP and nQ, in order to accu-
rately probe the fine dynamics occurring on short timescales
between observations. Other features, such as for instance
having the same number N of discretization points for rain-
fall and runoffs, are just arbitrary choices to ease the practi-
cal implementation of the method, which could be removed
without altering the results and conclusions of this work.
The same holds if the observations were irregularly spaced
in time, in which case one could use observation windows
with more/less intermediate discretization points. Note that
a large number of discretization points N , with a fixed num-
ber of observation points, does only moderately increase the
computational effort of the algorithm, since the part of the
Hamiltonian dynamics that scales with N can be calculated
analytically, as shown below.

The inference goal is to sample both parameter combina-
tions (θ , σξ , σz) and realizations ξ of the stochastic process
ξ(t) from a posterior distribution obeying Bayes’ equation,
which reads in its discretized form as
f
(
ξ ,θ ,σξ ,σz | P obs,Qobs

)
∝ f

(
Qobs | ξ ,θ ,σz

)
f
(
P obs | ξ ,σξ

)
f (ξ)f

(
θ ,σξ ,σz

)
, (1)

where f (θ , σξ , σz) is the joint prior distribution for the model
parameters, and f (Qobs | ξ , θ , σz)f (P obs | ξ , σξ ) is the like-
lihood expressing the probability of observed data (P obs,
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Table 1. List of model parameters that are assumed to be known, with their values and units.

Parameter Value Units Description

τ 636 s Autocorrelation time of the stochastic process ξ(t)
A 11 815.8 m2 Catchment area
α 25 L s−1 Coefficient of transformation H(Q)
β 50 L s−1 Coefficient of transformation H(Q)

Qobs) given model parameters (θ , σξ , σy) and a system re-
alization ξ , weighted by the prior probability density f (ξ).

The stochastic process realization ξ in Eq. (1) is a time
series of length N � 1. The high dimensionality of the
problem renders the likelihood computationally expensive,
thus making the inference problem intractable with tradi-
tional Bayesian inference algorithms, such as random walk
Metropolis algorithms, which require a large number of like-
lihood evaluations.

On the other hand, when the inference target is only the
posterior distribution for the model parameters (θ , σξ , σz)
and model simulations are fast, one may resort to approx-
imate Bayesian computation (ABC) algorithms (e.g. Albert
et al., 2015), which approximate the parameters’ posterior
through repeated comparisons of model simulations with ob-
servations in terms of a low-dimensional set of summary
statistics. However, here we are interested in the joint in-
ference of model parameters and the real rainfall ξ , which
makes ABC an inefficient approach.

To tackle this problem, we apply a Hamiltonian Monte
Carlo (HMC) algorithm (Duane et al., 1987; Neal, 2011; Al-
bert et al., 2016), which exploits the principles of Hamilto-
nian dynamics to attain very high acceptance rates and low
auto-correlation, even on high-dimensional sampling spaces.
This makes it possible to explore such spaces with large
steps, without compromising the acceptance rate and thus
making the algorithm very efficient. The inherent high ef-
ficiency of HMC is further boosted here by a timescale sepa-
ration analogous to the one described in Albert et al. (2016).

The HMC algorithm allows us to sample simultaneously
from the posterior of Eq. (1) both model parameters (θ , σξ ,
σz) and realizations of the stochastic process ξ . In particu-
lar, the rainfall potential ξ is inferred indirectly using prior
knowledge, the observed runoff Qobs and the possibly inac-
curate observed precipitation P obs. The discharge data are
used as an indirect source of knowledge about the rainfall,
which complements the unreliable information due to the
sparse rain-gauge measurements.

The method described here requires a stochastic input pro-
cess (i.e. a rainfall model), a hydrological rainfall-runoff
model to describe the observed dischargesQobs, observation
models for both rainfall and runoff, and prior probability dis-
tributions, which are all outlined below.

2.1 The rainfall model

The rainfall potential is described by a normal and linear
Ornstein–Uhlenbeck (OU) process with mean zero and stan-
dard deviation unity, which can be written in the form of a
Langevin equation as

ξ̇(t)=−
ξ

τ
+

√
2
τ
η(t), (2)

where η(t) represents zero-mean Gaussian white noise, and τ
is the process correlation time. The latter is set equal to 636 s
and will not be inferred. A list of model parameters that are
assumed to be known and are not inferred is given in Table 1.

The rainfall potential ξ(t) is then transformed into real rain
P(t) by the nonlinear transformation (Sigrist et al., 2012;
Ailliot et al., 2015; Del Giudice et al., 2016):

P(t)= r(ξ(t))=

{
λ(ξ(t)− ξr)

1+γ if ξ(t) > ξr
0 if ξ(t)≤ ξr

, (3)

where the zero–nonzero rain threshold ξr, the scaling factor
λ and the exponent γ are all inferred parameters. A list of all
inferred parameters is shown in Table 2. The inherent rainfall
stochasticity is thus accounted for by the stochastic process
of Eq. (2), while the skewness of the rainfall distribution and
a finite probability of zero rain are embedded in the model
by the transformation of Eq. (3). Note that since r(ξ)= 0 for
every ξ ≤ ξr, the transformation r is not invertible when the
precipitation is zero. We will discuss this point in detail in
Sect. 2.4.

2.2 The hydrological model

The storm water runoff is modelled by a linear reservoir sup-
plied by rainfall precipitation, P(t), and a constant ground-
water flow, Qgw. The dynamics of the water volume S(t) in
the reservoir is thus governed by

Ṡ(t)= AP(t)+Qgw−QM(t) with QM(t)=
S(t)

K
, (4)

where A is the estimated catchment area contributing to the
rainfall-runoff dynamics, QM is the hydrological model de-
scribing the runoff at the outlet of the system and K is the
retention time of the reservoir. It should be noted that the
original hydrological model used in Del Giudice et al. (2016)
is simplified here by omitting the daily variation due to the
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Table 2. Prior probability densities for the inferred parameters, with their mean values (µ), standard deviations (σ ) and units. N and LN
stand for normal and log-normal distributions, respectively. Note that here, also for log-normal distributions, µ and σ refer to the mean value
and standard deviation of a parameter, not its log. The mean and standard deviation for the log, µLN and σLN, respectively, are given by
µLN = log(µ2/

√
µ2+ σ 2) and σLN =

√
log(1+ σ 2/µ2).

Parameter Prior distribution µ σ Units Description

K LN 284.4 57.6 s Retention time
Qgw LN 6 1 L s−1 Groundwater flow
σz LN 4.5 0.45 L s−1 Runoff observation uncertainty
σξ LN 0.65 0.3 – Rainfall observation uncertainty
λ LN 0.1/60 0.05/60 L s−1 m−2 Scaling factor of transformation r(ξ)
γ LN 0.5 0.25 – Exponent of transformation r(ξ)
ξr N 0.5 0.1 – Zero–nonzero rain threshold
S1 N truncated to interval [0,∞) 0 5000 L Initial water volume

wastewater contribution. This is justified by the fact that in
the present work we only focus on a single short dataset of
4 h, whereas in Del Giudice et al. (2016) the authors consider
three independent datasets covering a time span of about
48 d. One may refer to Sect. 4 for more details.

The discretized form of Eq. (4) reads

Si =

(
1−

dt
K

)
Si−1+

(
APi−1+Qgw

)
dt, (5)

where Si and Pi are S(ti) and P(ti), respectively, with i =
1, . . . ,N . It should be noted that explicit methods, such as
the forward Euler scheme applied in Eq. (5), are very easy to
implement; however, they impose stringent limitations on the
time step size to ensure numerical stability. In general, ex-
plicit methods might not be sufficiently accurate in regions
where the solution exhibits a rapidly varying behaviour. In
that case it would be advisable to apply an implicit backward
scheme, numerically more stable albeit more difficult to im-
plement. In the application discussed here, we reckon that
the problem is simple enough to opt for the explicit forward
scheme, thus trading off accuracy for an easier implemen-
tation. The intrinsic inaccuracy of the method is attenuated
by choosing a discretization time step dt that is sufficiently
small compared to the system dynamics timescale.

The predicted discharge QM,i(ξ ,θ)=QM(ti)

(i = 1, . . . ,N ) can be calculated recursively using Eq. (5)
with the initial condition QM,1(ξ , θ)= S1/K . Straightfor-
ward calculations then yield

QM,i(ξ ,θ)=
S1

K

(
1−

dt
K

)i−1

+A
dt
K
Q
(ξ)
M,i

+

[
1−

(
1−

dt
K

)i−1
]
Qgw, (6)

where Q(ξ)
M,i is the ξ -dependent contribution defined recur-

sively as Q(ξ)
M,1 = 0 and

Q
(ξ)
M,i =

(
1−

dt
K

)
Q
(ξ)
M,i−1+ r (ξi−1) with i = 2, . . ., N, (7)

where we have used the rainfall potential transformation
Pi = r(ξi) of Eq. (3). The parameters of the hydrological
model,K ,Qgw and the initial water volume S1, are unknown
and to be inferred (see Table 2), while the catchment area is
known and fixed as A= 11815.8 m2 (Table 1).

2.3 Runoff observation model

The probability distribution for the observed dischargesQobs
given the model predictions QM,i(ξ ,θ) is assumed to be a
normal error model with standard deviation σz, which reads

f
(
Qobs | ξ ,θ ,σz

)
∝ exp

[
−
(
nQ+ 1

)
log(σz)

−

nQ+1∑
s=1

(
H
(
Qobs,s

)
−H

(
QM,(s−1)jQ+1(ξ ,θ)

))2
2σ 2
z

 , (8)

where (s− 1)jQ+ 1, with s = 1, . . . , nQ+ 1, are the indices
corresponding to real observations in the discretized runoff
dimension, and H is a transformation introduced to take the
heteroscedasticity of the errors into account (Del Giudice
et al., 2016):

H(Q)= β log
(

sinh
(
α+Q

β

))
, (9)

with the parameters α = 25 L s−1 and β = 50 L s−1 (Table 1).
Since we are only interested in terms depending on the pa-
rameters to be inferred, in Eq. (8) we can neglect constant

multiplicative factors such as the Jacobian
nQ+1∏
s=1

dH
dQ (Qobs,s).

2.4 Rainfall observation model

The observation error model for the rainfall, given the rainfall
potential ξ(t), is defined in the space of the rainfall potential
as a normal distribution centred on ξ(t) and with standard
deviation σξ . Its discretized form can be expressed in terms
of the discretized potential ξ as a product of normal distribu-
tions:
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f
(
ξobs | ξ ,σξ

)
=

nP+1∏
s=1

N(
ξ(s−1)jP+1,σξ

) (ξobs,s
)
, (10)

where ξobs is defined as the effective rainfall potential gener-
ating the observed rainfall, and N(ξ,σξ ) denotes a normal dis-
tribution with mean ξ and standard deviation σξ . Note that in
Eq. (10) the ξ(s−1)jP+1 values with s = 1, . . . , nP + 1 are the
elements of the discretized potential ξ corresponding to time
points where rainfall observations are available. This distri-
bution is transformed to real rainfall by the inverse transfor-
mation ξobs = r

−1(Pobs) (Eq. 3). However, since all ξ values
below ξr are transformed to zero rain, the transformation r is
invertible only where Pobs 6= 0. Therefore, we need to distin-
guish two possible regimes, with and without rain:

– At time points where Pobs 6= 0, the probability density
of Eq. (10) reads

fP 6=0
(
P obs | ξ ,σξ

)
∝ exp

[
−nP 6=0 log

(
σξ
)

−

∑
i,P 6=0

(
r−1 (Pobs,i

)
− ξ(i−1)jP+1

)2
2σ 2
ξ


×

∏
i,P 6=0

1
Ji
, (11)

where the sum
∑
i,P 6=0

extends only over time points ti

where Pobs,i 6= 0 and nP 6=0 is the total number of such
points. Moreover, the transformation from ξ to P values
requires the Jacobians Ji defined as

Ji =
dr
dξ

(
r−1 (Pobs,i

))
= λ(1+ γ )

(
r−1 (Pobs,i

)
− ξr

)γ
= λ(1+ γ )

(
Pobs,i

λ

) γ
1+γ
. (12)

– At time points where Pobs = 0 and therefore ξobs can
take any value below ξr, we integrate the probability
density of Eq. (10) over the interval [−∞, ξr]. This
yields the probability of zero observed rain, which turns
out to be the cumulative distribution function of the nor-
mal distribution; that is,

fP=0
(
P obs | ξ ,σξ

)
=

∏
i,P=0

1
2

[
1+ erf

(
ξr− ξ(i−1)jP+1

σξ
√

2

)]
, (13)

where the product
∏

i,P=0
extends over time points ti

where Pobs,i = 0.

Therefore,

f
(
P obs | ξ ,σξ

)
= fP 6=0

(
P obs | ξ ,σξ

)
fP=0

(
P obs | ξ ,σξ

)
.

2.5 The priors

At this point, the only elements of Eq. (1) that still need to
be defined are the prior distributions f (θ , σξ , σz) and f (ξ).
The former is simply the product of normal or log-normal
univariate probability densities for each individual parame-
ter to be inferred. The parameter vector θ here includes the
parameters of the hydrological model, K , Qgw and S1, as
well as those of the transformation r (Eq. 3), that is, ξr, λ
and γ . We infer a total of eight parameters, listed in Table 2.
For the parameters S1 and ξr the prior densities are assumed
to be normal distributions, whereas for the other parameters
(K , Qgw, λ and γ ) the prior densities are assumed to be log-
normal distributions:

f (θ)∝ exp

[
− logθ −

(logθ −µLN)
2

2σ 2
LN

]
, (14)

with the mean and standard deviation µLN and σLN, respec-
tively. Analogous log-normal distributions are assumed for
the rainfall and discharge observation uncertainties, σξ and
σz, respectively. The prior distributions for all parameters to
be inferred, with their mean values and standard deviations,
are summarized in Table 2.

Our prior knowledge of the rainfall potential ξ is defined in
terms of a function S(ξ), called action (Lau and Lubensky,
2007; Albert et al., 2016), as

f (ξ)∝ exp
[
−S(ξ)− ξ2

1 /2
]
, (15)

where the action can be written in its discretized form for the
SDE model of Eq. (2) as (see Sect. S1 in the Supplement)

S(ξ)≈
ξ2
N

4
−
ξ2

1
4
+

N∑
i=2

[
τ

4dt
(ξi − ξi−1)

2
+

dt
4τ
ξ2
i

]
, (16)

and the initial condition for ξ is specified as the marginal
distribution of a standard OU process, which is a standard
normal distribution for ξ1. It is noteworthy that the HMC
method described here always requires an explicit analyt-
ical form for the action S(ξ), which is essentially just the
negative log of the prior density f (ξ), which is also needed
in any other Metropolis-type sampling algorithm. Although
in this study we follow the approach of Del Giudice et al.
(2016) and resort to a linear OU process as a precipitation
generator, an analytical expression for the action is generally
readily available, even for more complex and nonlinear SDE
models. More details about the procedure to derive the ac-
tion for generic SDE models can be found in the Supplement
(Sect. S1).

Before setting off to implement the HMC algorithm, we
take one further convenient step; i.e. we apply the transfor-
mation from the coordinates ξ to the so-called staging vari-
ables u (Tuckerman et al., 1993) using

usjP+1 = ξsjP+1 with s = 0 , . . ., nP , (17)
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which leaves the components corresponding to measurement
points unchanged, and

usjP+k = ξsjP+k − ξ
∗

sjP+k
with s = 0, . . ., nP − 1

and k = 2, . . ., jP (18)

and with

ξ∗sjP+k =
(k−1)ξsjP+k+1+ ξsjP+1

k
(19)

for the intermediate discretization points. Also relevant are
the inverse transformations for the discretization points,

ξsjP+k =

jP+1∑
l=k

k− 1
l− 1

usjP+l +
jP − k+ 1

jP
usjp+1,

with s = 0, . . ., nP − 1 and k = 2, . . ., jP . (20)

The action S(ξ) (Eq. 16) can be formulated in the space of
u coordinates (see Sect. S2) as

S(u)=
kτ

4(k− 1)dt

nP∑
s=1

jP∑
k=2

u2
(s−1)jP+k

+
τ

4jP dt

nP∑
s=1

(
u(s−1)jP+1− usjP+1

)2
+
u2
N

4
−
u2

1
4
+

dt
4τ

nP∑
s=1

[
u2
sjP+1

+

jP∑
k=2

(
jP+1∑
l=k

k− 1
l− 1

u(s−1)jP+l

+
jP − k+ 1

jP
u(s−1)jP+1

)2
]
, (21)

while the initial condition ξ2
1 /2 can be simply replaced by

u2
1/2. This coordinate transformation, analogous to a trans-

formation to canonical coordinates, is not a strict requirement
of the HMC method and undoubtedly adds a further degree
of complexity to the overall strategy. However, it also bears
remarkable computational benefits. Indeed, the first term on
the right-hand side of Eq. (21) describes the potential of a
system of uncoupled harmonic oscillators, which can be ef-
fortlessly solved analytically. These dynamics also turn out
to be much faster than all other characteristic timescales of
the system. In Sect. 3 we will describe in detail how this can
be exploited.

3 The HMC algorithm

The HMC algorithm interprets the negative logarithm of the
posterior density as a potential energy driving the dynamics
of a fictitious statistical mechanics system whose configura-
tions, namely, the system’s degrees of freedom, are described

by combinations of both parameters (θ , σξ , σz) and realiza-
tions ξ of the stochastic process ξ(t). The degrees of free-
dom of the system are coupled to conjugate variables, that is,
to momenta π , paired with the parameters (θ , σξ , σz), and p,
paired with the realizations ξ . The posterior density of Eq. (1)
can be rewritten in the following discretized form:

f
(
ξ ,θ ,σξ ,σz | P obs,Qobs

)
∝

∫
exp[

−HHMC
(
ξ ,θ ,σξ ,σz;π ,p

)]
dπdp, (22)

with the Hamiltonian HHMC defined as

HHMC
(
ξ ,θ ,σξ ,σz;π ,p

)
=− log

[
f
(
ξ ,θ ,σξ ,σz |

P obs,Qobs
)]
+

Np∑
α=1

π2
α

2mα
+

N∑
i=1

p2
i

2mi
, (23)

whereNp is the number of parameters to be inferred (eight in
our case). We have introduced two auxiliary terms on the
right-hand side using the vectors of momenta π and p, akin
to the kinetic energies associated with the degrees of freedom
of the fictitious statistical mechanics system.

The masses mα and mi are tuning parameters of the al-
gorithm. Since we want the coordinates ξi corresponding to
actual observations to be more tightly constrained than those
corresponding to the intermediate discretization points, we
set msjP+1 =M with s = 0, . . . , nP , for the “heavy” mea-
surement points, andmsjP+k =m with s = 0, . . . , nP −1 and
k = 2, . . . , jP , for the “lighter” intermediate discretization
points, with M �m.

The potential energy, proportional to − log[f (ξ , θ , σξ ,
σz | P obs, Qobs)], guarantees that each state of the system
is compatible with the observations and constrained within
their measurement uncertainties, as well as with the prior
distributions for both model parameters and rainfall poten-
tial realizations ξ .

The HMC algorithm iterates the following steps. First,
vectors of momenta π and p are drawn from the zero-mean
normal distributions defined by the kinetic terms in Eq. (23).
Then, the system is left to evolve for a fictitious time interval
dτ in the (ξ , θ , σξ , σz; π , p) phase space according to Hamil-
ton’s equations. This Hamiltonian dynamics is controlled by
tuning the fictitious masses in Eq. (23), which represent the
variances of the normal distributions for the corresponding
momenta. Finally, the discretization error on the energy con-
servation introduced with the integration of Hamilton’s equa-
tions is corrected by a Metropolis accept/reject step. The re-
sulting marginal distributions of the Markov chains of the
system configurations (ξ , θ , σξ , σz) represent a sample of the
sought posterior density. The method is described in detail in
Albert et al. (2016).

Note that the presence of pronounced local minima in
a high-dimensional phase space might represent an insur-
mountable obstacle, even for more refined implementations
of the HMC method, for example, with automatic tuning
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of the algorithm hyper-parameters (see Sect. 4.1 for more
details). In that case one would have to resort to further
enhancements such as metadynamics (Laio and Gervasio,
2008) or parallel tempering (Swendsen and Wang, 1986;
Marinari and Parisi, 1992; Earl and Deem, 2005). However,
this is not an issue in the specific application discussed here.

Using Eq. (1) and the definitions given in Sect. 2.1–2.5,
we write the HMC Hamiltonian as

HHMC =HN +Hn+H1, (24)

where the three components describe dynamics occurring on
different timescales. Let us consider them individually. The
first component,

HN =

nP∑
s=1

jP∑
k=2

[
p2
(s−1)jP+k

2m
+

kτ

4(k− 1)dt
u2
(s−1)jP+k

]
, (25)

contains the harmonic term for the intermediate discretiza-
tion points from the action of Eq. (21) and scales as the total
number of discretization points N . The second component,

Hn =

nP+1∑
s=1

p2
(s−1)jP+1

2M
+

nP∑
s=1

τ

4jP dt

(
u(s−1)jP+1− usjP+1

)2
+

nQ+1∑
s=1

(
H
(
Qobs,s

)
−H

(
QM,(s−1)jQ+1(u,θ)

))2
2σ 2
z

+
(
nQ+ 1

)
log(σz)+

∑
i,P 6=0

[(
r−1 (Pobs,i

)
− u(i−1)jP+1

)2
2σ 2
ξ

+ logJi
]
+ nP 6=0 log

(
σξ
)
−

∑
i,P=0

log

[
1
2

(
1+ erf

(
ξr− u(i−1)jP+1

σξ
√

2

))]
, (26)

contains a harmonic term for the measurement points from
Eq. (21) and the observation error models f (Qobs | u, θ , σz)
and f (P obs | u, σξ ) from Sect. 2.3 and 2.4, respectively. All
the components of Eq. (26) scale as the number of obser-
vations nP or nQ. Note that both the observation models for
runoff and rainfall are rewritten in the space of u-coordinates.
While the coordinate transformation ξ → u is straightfor-
ward for the rainfall observation model, which only de-
pends on measurement points, it is somewhat more cumber-
some for the runoff observation model, which requires the ξ -
dependent componentQ(ξ)

M,i (see Eqs. 6 and 7) to be rewritten

in the u space as Q(u)
M,i . Such transformation is described in

Sect. S3. The third component of the Hamiltonian HHMC is

H1 =

Np∑
α=1

π2
α

2mα
+
u2
N

4
+
u2

1
4
+

dt
4τ

nP∑
s=1

[
u2
sjP+1

+

jP∑
k=2

(
jP+1∑
l=k

k− 1
l− 1

u(s−1)jP+l

+
jP − k+ 1

jP
u(s−1)jP+1

)2
]
+

∑
θ∈θN

(θ −µθ )
2

2σ 2
θ

+

∑
θ∈θLN

[
logθ +

(
logθ −µLN,θ

)2
2σ 2

LN,θ

]
, (27)

which includes the remaining terms from the rainfall poten-
tial prior (Eq. 15) and the model parameter priors. The latter,
i.e. the last two terms in Eq. (27), are sums over the param-
eters θN = (S1, ξr) and θLN = (K,Qgw,λ,γ,σξ ,σz), whose
prior densities are normal and log-normal distributions, re-
spectively. Note the sign change in front of the term u2

1/4
with respect to Eq. (21) due to the initial condition for u1
(see Eq. 15). The component H1 does not grow unbounded
with either N or nP or nQ (notice that dt ∝ 1/N ).

Let us now exploit the different timescales characteriz-
ing the three components of the Hamiltonian HHMC. We as-
sume the regime HN �Hn ≈H1, implying that the num-
ber of data points is not too large and that the total num-
ber of discretization points is instead large compared to the
number of data points. Under these conditions, the dynam-
ics of the system occur on very different timescales. In par-
ticular, the dynamics described by HN are much faster than
the other components of the Hamiltonian and therefore im-
pose the most stringent limitations on the step size for the
numerical integration of Hamilton equations. However, we
use Trotter’s formula (Tuckerman et al., 1992) to construct a
reversible molecular dynamics integrator to take the different
timescales into account as described in Albert et al. (2016).
In particular, we exploit the fact that the much faster dynam-
ics of the intermediate discretization points described by HN

is analogous to a system of uncoupled harmonic oscillators
that can be solved analytically. This analytical solution gives
a significant boosting contribution to the intrinsic efficiency
of the HMC algorithm. The “slow” remaining components of
the Hamiltonian, Hn and H1, can be integrated using a much
larger integration step, which allows us to explore the high-
dimensional parameter space of the system with remarkable
efficiency.

As explained in Albert et al. (2016), the decoupling of the
different dynamics and the analytical solution of the expen-
sive fast component is always possible for one-dimensional
SDE models. It is also possible in the case of multiple in-
dependent variables, where the decoupling procedure can be
applied to each of them individually. In this way, our HMC
approach covers a significant range of possible hydrological
modelling scenarios. However, in this work we focus only
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on 1D models, leaving the exploration of higher-dimensional
models to future studies.

4 Case study

In this work we apply a HMC method with a stochastic in-
put model (SIP) following Del Giudice et al. (2016) to in-
vestigate the rainfall-runoff dynamics of an urban catchment
based on real rainfall and runoff observations. The catch-
ment is a small and fast-reacting sewer network in Adliswil,
near Zurich, Switzerland. Two typical scenarios of possible
rainfall data are considered here; that is, we use the follow-
ing: (1) high-resolution data, with a time resolution of 1 min,
recorded by two pluviometers (denoted P1a and P1b) located
in the immediate vicinity of the catchment area, and (2) low-
resolution data, with a time resolution of 10 min, recorded
by a pluviometer (denoted P2) located further away from the
catchment, at a distance of about 6 km. We shall refer to the
two scenarios as scenario 1 (Sc1) and scenario 2 (Sc2), re-
spectively. More information can be found in Del Giudice
et al. (2016).

The precipitation data P obs used in this study contain
nP + 1= 241 observations in Sc1 and nP + 1= 25 observa-
tions in Sc2, covering a total observation time T = 240 min.
The initial and final observation time points are the same
for both scenarios and include a storm event that took place
in the evening of 10 June 2013, approximately between
18:00 and 20:00 LT. We should mention here a substantial
difference with respect to Del Giudice et al. (2016). In their
work, the authors base the inference process on three in-
dependent time series covering a total observation time of
1710 min distributed over a time span of 48 d. In the work
presented here, instead, we consider only the first of the three
time series, which also happens to be the shortest. Although
the HMC algorithm could deal with the multiple independent
time series used by Del Giudice et al. (2016), our simplifica-
tion finds its justification in that it reduces the computational
requirements of the problem, without compromising the goal
of our work, that is, showing the feasibility of Bayesian in-
ference of both model parameters and high-dimensional sys-
tem states (i.e. the ξ ’s) under the considerable hardship of a
stochastic input process.

The discharge flow at the outlet of the catchment was mea-
sured with a time resolution of 4 min, and the output obser-
vationsQobs, containing nQ+1= 61 measurements, are the
same for both scenarios and considered accurate compared to
the precipitation data. The initial and final observation times
are the same as for the input time series. The time series for
the observed outputs (Qobs) as well as the observed precipi-
tation (P obs) for both Sc1 and Sc2 are shown in Fig. 5.

Scenario 1 represents a best-case scenario of input data
availability, and we shall therefore classify it as the accurate
input scenario, while scenario 2 is a typical example of inac-
curate and unreliable input data due to both its sparsity and

the distance of the P2 rain gauge from the area of interest.
The runoff observations Qobs exhibit an important rainfall
event (the storm) represented by an evident discharge peak.
While this event is properly recorded by the rain gauges of
Sc1, the inaccurate input data of Sc2 misleadingly recorded
the event at an earlier time period, presumably when the
storm passed over the location of the distant pluviometer P2.

We are particularly interested in the performance of the
combined SIP-HMC method in the latter case, character-
ized by faulty precipitation data, which clearly represents the
most challenging scenario and therefore the hardest test for
the HMC method. Therefore, our work consists of three main
steps. First, we use the combined SIP-HMC approach de-
scribed above, with the inaccurate precipitation data P obs of
Sc2, to calibrate the model and infer the unknown “true” av-
erage rainfall pattern over the catchment. Then, we use the
accurate rainfall observations from Sc1 as a reference to as-
sess the quality of the simulated “true” rain. Finally, we re-
peat the calibration process using the accurate data of Sc1 as
a further validation for the method.

4.1 Implementation

The HMC algorithm is implemented in C++14 using the
open-source ADEPT library (Automatic Differentiation us-
ing Expression Templates, version 1.1) for the calculation
of the gradients of the Hamiltonian HHMC (Hogan, 2014).
Automated differentiation allows us to automatize the algo-
rithm to a large extent, thus making it applicable to a broad
range of models with relatively little implementation effort.
Indeed, for the hydrological application presented here we
resorted to the algorithm already implemented for the simpler
toy model studied in Albert et al. (2016). The implementation
of the algorithm remained essentially unaltered, except only
for the Hamiltonian HHMC that had to be modified according
to Eqs. (25)–(27).

The simulations were run on 2.6–3.7 GHz processors
Xeon-Gold 6142 with 196 GB of memory. We observed a
relatively short burn-in phase for all inferred parameters, sug-
gesting the possibility of a straightforward (embarrassingly
simple) parallelization of the algorithm obtained by sim-
ply breaking up the Markov chains into smaller independent
chains that can then be executed as parallel processes. It is
well known that Markov Chain Monte Carlo (MCMC) meth-
ods, like the HMC algorithm employed here, are indeed very
well suited for parallel computing. This kind of approach was
proven successful in Albert et al. (2016) with a toy system.
In that case we used an OpenMP-based parallel implementa-
tion of the algorithm and observed a reasonably linear strong
scaling behaviour with up to 16 parallel processes.

In the present work, for Sc2, after an initial single burn-in
chain of 75 000 steps, which is then disregarded, we limited
ourselves to running four independent Markov chains each
of length 100 000 steps based on a serial implementation of
the algorithm. For Sc1, which is faster than Sc2 due to the
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much smaller number of intermediate discretization points
(see below for more details), we considered a single chain
of 750 000 steps and disregarded the first 150 000 steps. The
extension of the current serial version to an OpenMP parallel
implementation of the HMC code would be straightforward.

We set a fine-grid time step dt = 10 s and a total number of
discretization points N = 1441 for both scenarios. It is easy
to verify that these conditions are fulfilled by setting the num-
ber of bins between consecutive observations to jP = 6 or
jP = 60 on the precipitation dimension for Sc1 and Sc2, re-
spectively, and jQ = 24 for the runoff dimension. The initial
configuration of the system state ξ for the burn-in chain is a
random realization of the OU process of Eq. (2), while the
parameters are set equal to the mean values of their prior dis-
tributions (see Table 2).

The algorithm requires tuning of two sets of parameters,
that is, the parameters defining the Hamiltonian propaga-
tor in the molecular dynamics part of the HMC algorithm
(see Eq. 26 in Albert et al., 2016) and the masses m, M
and mα defining the kinetic energy of the system in HHMC.
Thus, in the Hamiltonian propagator we set the integration
time 1τ = 0.015 and the number of integration steps P = 3,
while the masses were set tom= 0.4 for the intermediate dis-
cretization points and M = 1.6 for the measurement points.
The masses for the inferred parameters are given in Table 3.

It should be noted that the integration time interval of the
Hamiltonian propagator could be automatically optimized by
employing the so-called No-U-Turn Sampler (NUTS) (Hoff-
man and Gelman, 2014), and the masses of the kinetic terms
could be tuned by adapting their values to the curvature of
the energy landscape (Girolami and Calderhead, 2011; Hart-
mann et al., 2022). The efficiency of the HMC algorithm
would surely benefit from these approaches but at some cost
in terms of implementation efforts. In this work we simply
opt for a manual tuning of the hyper-parameters mentioned
above.

In Sc2, a full Markov chain of 100 000 steps requires ap-
proximately 1 h and 20 min on our hardware, while a chain
of 750 000 in Sc1 requires about 2.5 h. At each iteration of
the chain, the algorithm infers 1449 parameters, that is, eight
model parameters (θ , σξ , σz) and N = 1441 coordinates of
the system state ξ .

The algorithm spends ≈ 96 % of the total run time in the
molecular dynamics part, that is, in the loop for the integra-
tion of Hamilton’s equations. The loop is called once in each
step of the Markov chain. At each call, the HMC algorithm
performs one evaluation of the posterior function HHMC, for
the calculation of the system energy, and six evaluations of its
derivatives (with P = 3 integration steps). In our case study
and implementation of the algorithm, each differentiation of
the posterior function turns out to be about 6 times more
expensive than its plain evaluation. Although this factor is
only indicative and may vary to some extent between dif-
ferent implementations, the calculation of the derivatives in

Table 3. Parameter masses mα for the kinetic term of Eq. (27).

Parameter K Qgw σz σξ λ γ ξr S1

Mass 10−5 1.0 1.0 1.0 2× 105 0.5 15.0 10−7

general represents the major bottleneck in the performance
of the HMC algorithm.

4.2 Results

The Markov chains for the model parameters generated using
the unreliable input data of Sc2 are shown in Fig. 1. A sim-
ple visual inspection leads us to conclude with a good confi-
dence that the chains have appropriately converged, and the
mixing in parameters space is satisfactory. Figure 2 shows
the Markov chains for the same model parameters, gener-
ated using the accurate rainfall observations of Sc1. The cor-
responding marginal posterior probability densities for the
model parameters, for both Sc2 and Sc1, are shown in Fig. 3
together with the initial prior distributions.

The two scenarios bear some interesting albeit not surpris-
ing differences. In general, the posterior distributions gener-
ated in Sc1 tend to be narrower than the corresponding dis-
tributions in Sc2, clearly reflecting the accuracy of the pre-
cipitation data. The rainfall observational error σξ appears to
be also strongly shifted to lower values in Sc1, indicative of
the reduced uncertainty compared to the faulty Sc2. On the
other hand, the practically identical posterior densities for the
runoff observational error σz reflect the fact that the discharge
data Qobs are the same for both scenarios.

Moreover, Fig. 3 shows that among the rain-related param-
eters of the transformation of Eq. (3), the marginal posterior
for the exponent γ exhibits the largest shift towards smaller
values when going from Sc2 to Sc1, while the zero–nonzero
rain threshold ξr is only mildly shifted to larger values, and
the scaling factor λ seems to be essentially unaltered, be-
sides the narrowing effect due to the improved accuracy of
the precipitation data. The algorithm automatically tunes the
parameters of the rainfall potential transformation to match
the available rainfall data. The smaller value of the exponent
γ in Sc1 compared to Sc2 reflects this attempt of the algo-
rithm to find a better fit to the rain observations, especially
where precipitation values are large.

Among the parameters of the hydrological model, the
marginal distribution of the retention time K appears to be
clearly shifted to smaller values in Sc1, suggesting a faster re-
acting system compared to Sc2, while the groundwater con-
tributions Qgw and the initial water volume S1 exhibit only
very minor shifts.

In Fig. 4 we also show two typical Markov chains from
Sc2 for the stochastic process ξ , evaluated at two time points
with and without rain. The two chains clearly fluctuate above
(point with rain) and below (point without rain) the inferred
zero–nonzero rain threshold ξr. Analogously to the model pa-
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Figure 1. Markov chains for the model parameters generated using the faulty input data of Sc2. As explained in Sect. 4.1, we have four
independent chains for each parameter.

rameters, the Markov chains for ξ appear to have converged
and to be well mixed. The ξ chains in Sc1 are qualitatively
identical to those of Sc2 and are not shown here.

In the left panels of Fig. 5 we compare the inferred dis-
charge and rainfall patterns,QM(ξ ,θ) and r(ξ), respectively,
based on the inaccurate rainfall data of Sc2, with the ob-
served runoff Qobs and precipitation P obs. The measured
outflow (upper panel, open red squares) clearly exhibits dis-
charge peaks that are coupled to corresponding peaks in the
observed rainfall in Sc1 (lower panel, open purple squares)
but not in Sc2 (lower panel, filled blue squares). These “miss-
ing” peaks are indications that some rainfall events were ei-
ther not detected or recorded at a different time point by the

rain gauge (P2) that produced these data. This is of course in
line with the inaccuracy of Sc2.

The observed output peaks are used by the HMC algorithm
as an additional source of information about the rain falling
over the catchment area during the observation time. This
new information, together with the stochastic input model, is
used to attempt a reconstruction of a true rainfall pattern. The
simulated rainfall and outflow patterns are represented by the
medians of their inferred distributions (black line) and an un-
certainty given by the 2.5 %–97.5 % quantiles (grey area).
The rainfall pattern reconstructed using the inaccurate data
of Sc2 (lower left panel) clearly displays the peaks corre-
sponding to the rainfall events that had been missed by the
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Figure 2. Markov chains for the model parameters from Sc1. Unlike Sc2, we have a single chain for each parameter in this case.

pluviometer P2 located away from the catchment (filled blue
squares). Such predicted peaks reproduce the rainfall events
detected in Sc1 by the rain gauges P1a and P1b in the prox-
imity of the area of interest (open purple squares) very accu-
rately in both time and duration.

The right panels of Fig. 5 compare runoff and precipitation
observations with the inferred discharge and rainfall patterns
in the accurate framework of Sc1. Although the simulated
rain in Sc1 features somewhat less intense peaks than in Sc2,
the remarkable fact that emerges from the comparison of the
left and right panels of Fig. 5 (referring to Sc2 and Sc1, re-
spectively) is that the rainfall patterns predicted in the two
scenarios are qualitatively very similar, despite the signifi-
cant difference in the accuracy of the data used for the infer-
ence.

Although not shown here, we have also run the HMC in-
ference without rainfall data at all, i.e. omitting the term
f (P obs | ξ , σξ ) in the posterior density, obtaining both model
parameter marginals and a predicted rainfall pattern that are
substantially identical to those obtained with the inaccurate
data of Sc2. Essentially, in Sc2 the HMC algorithm “learns”
that the observed rain is unreliable and should thus be ig-
nored. However, in most applications, the accuracy and reli-
ability of the measured precipitation data is unknown a priori.
In those cases the rainfall observations can be safely used in
the inference process, since the algorithm itself will assess
its accuracy and possibly disregard it in favour of a more re-
liable reconstructed rainfall.

The inferred outflows, shown in the upper panels of Fig. 5
match the observations very well and are essentially identi-

Hydrol. Earth Syst. Sci., 27, 2935–2950, 2023 https://doi.org/10.5194/hess-27-2935-2023



S. Ulzega and C. Albert: Bayesian parameter inference in hydrological modelling 2947

Figure 3. Marginal posterior probability densities for the model parameters from Sc2 (thick black line) and Sc1 (thin grey line). The dashed
lines represent the prior densities.

cal, compatible with the assumption that runoff data are ac-
curate and the same for the two scenarios.

5 Conclusions

The goal of this work is to demonstrate that HMC algo-
rithms employing a timescale separation can solve hard infer-

ence problems with stochastic hydrological models. In Albert
et al. (2016) we proposed a novel implementation of an HMC
algorithm combined with a multiple timescale integration for
Bayesian parameter inference with nonlinear SDE models,
and we demonstrated the performance of the method using
a rainfall-runoff toy model with synthetic data time series.
This work is the first application to a real-world case study,
with real time series of measured rainfall and outflows. We
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Figure 4. Typical Markov chains for two different points of the stochastic process ξ from Sc2, with (a) and without (b) rain. The horizontal
solid line is the median of the inferred zero–nonzero rain threshold ξr, while the shaded area represents its uncertainty given by the 2.5 and
97.5 percentiles. As in Fig. 1, we have four independent chains for each point.

Figure 5. Comparison of observed and predicted discharges (a, b) and rainfall (c, d), based on Sc2 (a, c) and Sc1 (b, d) data. Predictions are
represented by the median (black line) of the corresponding inferred distributions and a confidence interval given by the 2.5 and 97.5 per-
centiles (grey area). In the bottom panels the predicted rain is compared with both the inaccurate data of Sc2 (filled squares) and the accurate
data of Sc1 (open squares).

show that the HMC algorithm is a powerful inference method
for the data-driven calibration of hydrological model param-
eters, especially well suited for both computationally expen-
sive stochastic models and cases, far from rare in hydrology,
where the precipitation data are inaccurate and unreliable.

The combined SIP-HMC method presented here allows us
also to estimate the “true” average rain input to a hydrologi-
cal system in the case of highly inaccurate precipitation data
probabilistically and with great accuracy, using only prior
knowledge and the observed outflow. Runoff data are used
by the algorithm as a first-hand information resource about
the unknown precipitation over the catchment. This infor-
mation can override the available, and possibly inaccurate,
rainfall data. The reconstructed precipitation is then used to
infer the hydrological model parameters, which are thus pro-

tected from the deteriorating effect of the uncertainty on the
rainfall observations. This approach considerably reduces the
bias in the inferred parameters and therefore leads to more re-
liable runoff predictions, which can in turn be very useful for
decision-makers in planning and policy-making.

The use of AD makes the algorithm in principle applicable
to more complex models. Indeed, the generalization of the al-
gorithm from the toy model used in Albert et al. (2016) pre-
sented only one possibly challenging requirement, namely
rewriting the Hamiltonian HHMC, while the rest of the imple-
mentation of the algorithm remained essentially unchanged.
This application shows that≈ 103 parameters can be inferred
in less than 2 h. This leaves us with a considerable margin to
tackle more complex problems and datasets of much larger
sizes. However, it must be noted that the HMC algorithm in
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the form described in this work is limited to non-spatially re-
solved models depending only on a time variable. In princi-
ple, the method could cope with further spatial dimensions,
for example, describing inundations, but this would require
a non-trivial adaptation of the algorithm, which is not dis-
cussed here. More importantly, a significant limitation of the
HMC method presented in this work is that it requires, unlike
methods that only involve forward-solving the model, such as
SIP (Del Giudice et al., 2016), an explicitly discretized solu-
tion of the hydrological model (see Eq. 5), which might not
be always easily available. In those cases, one may need to
resort to appropriate numerical solvers, often employing ad-
vanced implicit schemes, which in turn may make AD prob-
lematic.

The extension of the HMC method described here to fur-
ther hydrological models and systems will be the focus of fu-
ture works. Furthermore, the HMC algorithm presented here
is not at all limited to hydrology. It is a very general, effi-
cient, easily parallelizable and scalable algorithm that makes
Bayesian inference with expensive stochastic models feasi-
ble in spite of its computational hardships, with a very broad
range of potential applications in applied sciences that can
benefit from stochastic modelling and a fast Bayesian infer-
ence method.

Code and data availability. The C++ code for HMC and the data
used for this study are available on GitHub at https://github.com/
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