Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-24641
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDiethelm, Matthias-
dc.contributor.authorPenninck, Lieven-
dc.contributor.authorRegnat, Markus-
dc.contributor.authorOffermans, Ton-
dc.contributor.authorZimmermann, Birger-
dc.contributor.authorKirsch, Christoph-
dc.contributor.authorHiestand, Roman-
dc.contributor.authorAltazin, Stéphane-
dc.contributor.authorRuhstaller, Beat-
dc.date.accessioned2022-03-18T09:28:08Z-
dc.date.available2022-03-18T09:28:08Z-
dc.date.issued2020-10-
dc.identifier.issn0038-092Xde_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/24641-
dc.description.abstractSheet resistance losses and local defects are challenges faced in solar module fabrication and upscaling processes. Commonly used investigation tools are non-invasive optical and thermal imaging techniques, such as electroluminescence, photoluminescence as well as illuminated and dark infrared imaging. Here, we investigate the potential of computationally efficient finite element simulation of solar cells and modules by considering planar electrodes coupled by a local current–voltage coupling law. Sheet resistances are determined by fitting current simulation results of an OPV solar cell to electroluminescence imaging data. Moreover, a thermal model is introduced that accounts for Joule heating due to an electrothermal coupling. A direct comparison of simulated temperature maps to measured infrared images is therefore possible. The electrothermal model is successfully validated by comparing measured and simulated temperature profiles across four interconnected organic solar cells of a mini-module. Furthermore, the influence of shunts on the thermal behavior of OPV modules is investigated by comparing electrothermal simulation results to dark lock-In IR thermography images.de_CH
dc.language.isoende_CH
dc.publisherElsevierde_CH
dc.relation.ispartofSolar Energyde_CH
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/de_CH
dc.subjectPhotovoltaikde_CH
dc.subjectThermal imagingde_CH
dc.subjectElectrothermal simulationde_CH
dc.subjectOrganic photovoltaicsde_CH
dc.subjectFinite element method (FEM)de_CH
dc.subject.ddc621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnikde_CH
dc.titleFinite element modeling for analysis of electroluminescence and infrared images of thin-film solar cellsde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.1016/j.solener.2020.08.058de_CH
dc.identifier.doi10.21256/zhaw-24641-
zhaw.funding.euNode_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end193de_CH
zhaw.pages.start186de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume209de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.webfeedPhotovoltaikde_CH
zhaw.webfeedPhotonicsde_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2020_Diethelm-etal_FEM-thin-film-solar-cells.pdf4.35 MBAdobe PDFThumbnail
View/Open
Show simple item record
Diethelm, M., Penninck, L., Regnat, M., Offermans, T., Zimmermann, B., Kirsch, C., Hiestand, R., Altazin, S., & Ruhstaller, B. (2020). Finite element modeling for analysis of electroluminescence and infrared images of thin-film solar cells. Solar Energy, 209, 186–193. https://doi.org/10.1016/j.solener.2020.08.058
Diethelm, M. et al. (2020) ‘Finite element modeling for analysis of electroluminescence and infrared images of thin-film solar cells’, Solar Energy, 209, pp. 186–193. Available at: https://doi.org/10.1016/j.solener.2020.08.058.
M. Diethelm et al., “Finite element modeling for analysis of electroluminescence and infrared images of thin-film solar cells,” Solar Energy, vol. 209, pp. 186–193, Oct. 2020, doi: 10.1016/j.solener.2020.08.058.
DIETHELM, Matthias, Lieven PENNINCK, Markus REGNAT, Ton OFFERMANS, Birger ZIMMERMANN, Christoph KIRSCH, Roman HIESTAND, Stéphane ALTAZIN und Beat RUHSTALLER, 2020. Finite element modeling for analysis of electroluminescence and infrared images of thin-film solar cells. Solar Energy. Oktober 2020. Bd. 209, S. 186–193. DOI 10.1016/j.solener.2020.08.058
Diethelm, Matthias, Lieven Penninck, Markus Regnat, Ton Offermans, Birger Zimmermann, Christoph Kirsch, Roman Hiestand, Stéphane Altazin, and Beat Ruhstaller. 2020. “Finite Element Modeling for Analysis of Electroluminescence and Infrared Images of Thin-Film Solar Cells.” Solar Energy 209 (October): 186–93. https://doi.org/10.1016/j.solener.2020.08.058.
Diethelm, Matthias, et al. “Finite Element Modeling for Analysis of Electroluminescence and Infrared Images of Thin-Film Solar Cells.” Solar Energy, vol. 209, Oct. 2020, pp. 186–93, https://doi.org/10.1016/j.solener.2020.08.058.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.