Publication type: | Article in scientific journal |
Type of review: | Not specified |
Title: | Context-aware learning for generative models |
Authors: | Perdikis, Serafeim Leeb, Robert Chavarriaga, Ricardo Millán, José del R. |
et. al: | No |
DOI: | 10.1109/TNNLS.2020.3011671 |
Published in: | IEEE Transactions on Neural Networks and Learning Systems |
Issue Date: | 10-Aug-2020 |
Publisher / Ed. Institution: | IEEE |
ISSN: | 2162-237X 2162-2388 |
Language: | English |
Subjects: | Statistics; Machine Learning |
Subject (DDC): | 006: Special computer methods |
Abstract: | This work studies the class of algorithms for learning with side-information that emerge by extending generative models with embedded context-related variables. Using finite mixture models (FMM) as the prototypical Bayesian network, we show that maximum-likelihood estimation (MLE) of parameters through expectation-maximization (EM) improves over the regular unsupervised case and can approach the performances of supervised learning, despite the absence of any explicit ground truth data labeling. By direct application of the missing information principle (MIP), the algorithms' performances are proven to range between the conventional supervised and unsupervised MLE extremities proportionally to the information content of the contextual assistance provided. The acquired benefits regard higher estimation precision, smaller standard errors, faster convergence rates and improved classification accuracy or regression fitness shown in various scenarios, while also highlighting important properties and differences among the outlined situations. Applicability is showcased with three real-world unsupervised classification scenarios employing Gaussian Mixture Models. Importantly, we exemplify the natural extension of this methodology to any type of generative model by deriving an equivalent context-aware algorithm for variational autoencoders (VAs), thus broadening the spectrum of applicability to unsupervised deep learning with artificial neural networks. The latter is contrasted with a neural-symbolic algorithm exploiting side-information. |
URI: | https://repository.essex.ac.uk/28199/ https://digitalcollection.zhaw.ch/handle/11475/20503 |
Fulltext version: | Published version |
License (according to publishing contract): | Licence according to publishing contract |
Departement: | School of Engineering |
Organisational Unit: | Institute of Applied Information Technology (InIT) |
Appears in collections: | Publikationen School of Engineering |
Files in This Item:
There are no files associated with this item.
Show full item record
Perdikis, S., Leeb, R., Chavarriaga, R., & Millán, J. d. R. (2020). Context-aware learning for generative models. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2020.3011671
Perdikis, S. et al. (2020) ‘Context-aware learning for generative models’, IEEE Transactions on Neural Networks and Learning Systems [Preprint]. Available at: https://doi.org/10.1109/TNNLS.2020.3011671.
S. Perdikis, R. Leeb, R. Chavarriaga, and J. d. R. Millán, “Context-aware learning for generative models,” IEEE Transactions on Neural Networks and Learning Systems, Aug. 2020, doi: 10.1109/TNNLS.2020.3011671.
PERDIKIS, Serafeim, Robert LEEB, Ricardo CHAVARRIAGA und José del R. MILLÁN, 2020. Context-aware learning for generative models. IEEE Transactions on Neural Networks and Learning Systems [online]. 10 August 2020. DOI 10.1109/TNNLS.2020.3011671. Verfügbar unter: https://repository.essex.ac.uk/28199/
Perdikis, Serafeim, Robert Leeb, Ricardo Chavarriaga, and José del R. Millán. 2020. “Context-Aware Learning for Generative Models.” IEEE Transactions on Neural Networks and Learning Systems, August. https://doi.org/10.1109/TNNLS.2020.3011671.
Perdikis, Serafeim, et al. “Context-Aware Learning for Generative Models.” IEEE Transactions on Neural Networks and Learning Systems, Aug. 2020, https://doi.org/10.1109/TNNLS.2020.3011671.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.