Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-20461
Publication type: Article in scientific journal
Type of review: Peer review (publication)
Title: Rational design of a fluorescent microneedle tattoo for minimally invasive monitoring of lymphatic function
Authors: Babity, Samuel
Polomska, Anna K.
Couture, Frédéric
Bonmarin, Mathias
Fehr, Daniel
Detmar, Michael
Brambilla, Davide
et. al: No
DOI: 10.1016/j.jconrel.2020.08.017
10.21256/zhaw-20461
Published in: Journal of Controlled Release
Volume(Issue): 327
Page(s): 350
Pages to: 359
Issue Date: 18-Aug-2020
Publisher / Ed. Institution: Elsevier
ISSN: 0168-3659
1873-4995
Language: English
Subjects: Diagnostics; Lymphatics; Microneedle; Monitoring; Tattoo
Subject (DDC): 610: Medicine and health
Abstract: The monitoring of lymphatic drainage is of great importance, particularly in the context of the early detection and diagnosis of several diseases. Existing methods of imaging and monitoring lymphatic drainage can be costly and require trained personnel, posing problems for at-home or point-of-care monitoring. Recently, an alternative approach has been proposed, consisting of using microneedles to deliver a near-infrared (NIR) fluorescent tattoo to the skin, which can be monitored with traditional laboratory-based fluorescence detectors. In this work, we present further development of this approach, using a specifically designed NIR-fluorescent probe and rational optimization of microneedle properties and the spatial location of the NIR dye within the microneedles. Moreover, we demonstrate that this method is compatible with a custom-made portable fluorescence measurement device and able to discriminate between drainage and lack of drainage in vivo in rats.
URI: https://digitalcollection.zhaw.ch/handle/11475/20461
Fulltext version: Accepted version
License (according to publishing contract): CC BY-NC-ND 4.0: Attribution - Non commercial - No derivatives 4.0 International
Restricted until: 2021-08-18
Departement: School of Engineering
Organisational Unit: Institute of Computational Physics (ICP)
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2020_Babity-etal_Fluorescent-microneedle-tattoo-monitoring-lymphatic-function.pdfAccepted Version1.07 MBAdobe PDFThumbnail
View/Open
Show full item record
Babity, S., Polomska, A. K., Couture, F., Bonmarin, M., Fehr, D., Detmar, M., & Brambilla, D. (2020). Rational design of a fluorescent microneedle tattoo for minimally invasive monitoring of lymphatic function. Journal of Controlled Release, 327, 350–359. https://doi.org/10.1016/j.jconrel.2020.08.017
Babity, S. et al. (2020) ‘Rational design of a fluorescent microneedle tattoo for minimally invasive monitoring of lymphatic function’, Journal of Controlled Release, 327, pp. 350–359. Available at: https://doi.org/10.1016/j.jconrel.2020.08.017.
S. Babity et al., “Rational design of a fluorescent microneedle tattoo for minimally invasive monitoring of lymphatic function,” Journal of Controlled Release, vol. 327, pp. 350–359, Aug. 2020, doi: 10.1016/j.jconrel.2020.08.017.
BABITY, Samuel, Anna K. POLOMSKA, Frédéric COUTURE, Mathias BONMARIN, Daniel FEHR, Michael DETMAR und Davide BRAMBILLA, 2020. Rational design of a fluorescent microneedle tattoo for minimally invasive monitoring of lymphatic function. Journal of Controlled Release. 18 August 2020. Bd. 327, S. 350–359. DOI 10.1016/j.jconrel.2020.08.017
Babity, Samuel, Anna K. Polomska, Frédéric Couture, Mathias Bonmarin, Daniel Fehr, Michael Detmar, and Davide Brambilla. 2020. “Rational Design of a Fluorescent Microneedle Tattoo for Minimally Invasive Monitoring of Lymphatic Function.” Journal of Controlled Release 327 (August): 350–59. https://doi.org/10.1016/j.jconrel.2020.08.017.
Babity, Samuel, et al. “Rational Design of a Fluorescent Microneedle Tattoo for Minimally Invasive Monitoring of Lymphatic Function.” Journal of Controlled Release, vol. 327, Aug. 2020, pp. 350–59, https://doi.org/10.1016/j.jconrel.2020.08.017.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.