Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-20176
Publication type: Article in scientific journal
Type of review: Peer review (publication)
Title: Analysis of a tubular torsionally resonating viscosity–density sensor
Authors: Brunner, Daniel
Goodbread, Joe
Häusler, Klaus
Kumar, Sunil
Boiger, Gernot Kurt
Khawaja, Hassan A.
et. al: No
DOI: 10.3390/s20113036
10.21256/zhaw-20176
Published in: Sensors
Volume(Issue): 20
Issue: 11
Page(s): 3036
Issue Date: 27-May-2020
Publisher / Ed. Institution: MDPI
ISSN: 1424-8220
1424-8239
Language: English
Subjects: Fluid–structure interaction; Torsional resonator; Viscometer; Viscosity measurement; Viscosity–density sensor
Subject (DDC): 530: Physics
Abstract: This paper discusses a state-of-the-art inline tubular sensor that can measure the viscosity-density of a passing fluid. In this study, experiments and numerical modelling were performed to develop a deeper understanding of the tubular sensor. Experimental results were compared with an analytical model of the torsional resonator. Good agreement was found at low viscosities, although the numerical model deviated slightly at higher viscosities. The sensor was used to measure viscosities in the range of 0.3-1000 mPa·s at a density of 1000 kg/m3. Above 50 mPa·s, numerical models predicted viscosity within ±5% of actual measurement. However, for lower viscosities, there was a higher deviation between model and experimental results up to a maximum of ±21% deviation at 0.3 mPa·s. The sensor was tested in a flow loop to determine the impact of both laminar and turbulent flow conditions. No significant deviations from the static case were found in either of the flow regimes. The numerical model developed for the tubular torsional sensor was shown to predict the sensor behavior over a wide range, enabling model-based design scaling.
URI: https://digitalcollection.zhaw.ch/handle/11475/20176
Fulltext version: Published version
License (according to publishing contract): CC BY 4.0: Attribution 4.0 International
Departement: School of Engineering
Organisational Unit: Institute of Computational Physics (ICP)
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2020_Brunner_etal_Analysis-viscosity-density-sensor_Sensors.pdf1.56 MBAdobe PDFThumbnail
View/Open
Show full item record
Brunner, D., Goodbread, J., Häusler, K., Kumar, S., Boiger, G. K., & Khawaja, H. A. (2020). Analysis of a tubular torsionally resonating viscosity–density sensor. Sensors, 20(11), 3036. https://doi.org/10.3390/s20113036
Brunner, D. et al. (2020) ‘Analysis of a tubular torsionally resonating viscosity–density sensor’, Sensors, 20(11), p. 3036. Available at: https://doi.org/10.3390/s20113036.
D. Brunner, J. Goodbread, K. Häusler, S. Kumar, G. K. Boiger, and H. A. Khawaja, “Analysis of a tubular torsionally resonating viscosity–density sensor,” Sensors, vol. 20, no. 11, p. 3036, May 2020, doi: 10.3390/s20113036.
BRUNNER, Daniel, Joe GOODBREAD, Klaus HÄUSLER, Sunil KUMAR, Gernot Kurt BOIGER und Hassan A. KHAWAJA, 2020. Analysis of a tubular torsionally resonating viscosity–density sensor. Sensors. 27 Mai 2020. Bd. 20, Nr. 11, S. 3036. DOI 10.3390/s20113036
Brunner, Daniel, Joe Goodbread, Klaus Häusler, Sunil Kumar, Gernot Kurt Boiger, and Hassan A. Khawaja. 2020. “Analysis of a Tubular Torsionally Resonating Viscosity–Density Sensor.” Sensors 20 (11): 3036. https://doi.org/10.3390/s20113036.
Brunner, Daniel, et al. “Analysis of a Tubular Torsionally Resonating Viscosity–Density Sensor.” Sensors, vol. 20, no. 11, May 2020, p. 3036, https://doi.org/10.3390/s20113036.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.