Full metadata record
DC FieldValueLanguage
dc.contributor.authorMihali, Voichita-
dc.contributor.authorHonciuc, Andrei-
dc.date.accessioned2019-08-09T06:29:40Z-
dc.date.available2019-08-09T06:29:40Z-
dc.date.issued2019-
dc.identifier.issn1936-0851de_CH
dc.identifier.issn1936-086Xde_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/17889-
dc.description.abstractSelf-organization dramatically affects the surface properties of materials on a macroscopic scale, such as wettability and adhesion. Fundamentally, it is equally interesting when self-organization at the nanoscale affects the bulk properties and thus provides a means to engineer the optoelectronic properties of the materials on larger scales. In this work, we report the evolution of conductive self-organized polymer microcapsules from a monomer emulsion droplet stabilized by a monolayer of conductive Janus nanoparticles (JNPs) via a mechanism resembling morphogenesis. The wall of the resulting conductive microcapsule has a honeycomb-like structure with highly oriented JNPs occupying each hollow cell. The JNPs consist of an electrically conductive lobe and an insulating lobe; because of their orientation and presence in the honeycomb, the conductivity of the microcapsule is greatly enhanced as compared to that of each of the constituting materials. This method can be universally applied to induce self-organization in conductive polymers forming by oxidative addition.de_CH
dc.language.isoende_CH
dc.publisherAmerican Chemical Societyde_CH
dc.relation.ispartofACS Nanode_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectPEDOT microcapsulede_CH
dc.subjectPickering emulsionde_CH
dc.subjectCooperative dopingde_CH
dc.subjectInterfacial polymerizationde_CH
dc.subjectSemiconductive Janus nanoparticlede_CH
dc.subject.ddc540: Chemiede_CH
dc.titleEvolution of self-organized microcapsules with variable conductivities from self-assembled nanoparticles at interfacesde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementLife Sciences und Facility Managementde_CH
zhaw.organisationalunitInstitut für Chemie und Biotechnologie (ICBT)de_CH
dc.identifier.doi10.1021/acsnano.8b09625de_CH
dc.identifier.pmid30862162de_CH
zhaw.funding.euNode_CH
zhaw.issue3de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end3491de_CH
zhaw.pages.start3483de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume13de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.author.additionalNode_CH
Appears in collections:Publikationen Life Sciences und Facility Management

Files in This Item:
There are no files associated with this item.
Show simple item record
Mihali, V., & Honciuc, A. (2019). Evolution of self-organized microcapsules with variable conductivities from self-assembled nanoparticles at interfaces. ACS Nano, 13(3), 3483–3491. https://doi.org/10.1021/acsnano.8b09625
Mihali, V. and Honciuc, A. (2019) ‘Evolution of self-organized microcapsules with variable conductivities from self-assembled nanoparticles at interfaces’, ACS Nano, 13(3), pp. 3483–3491. Available at: https://doi.org/10.1021/acsnano.8b09625.
V. Mihali and A. Honciuc, “Evolution of self-organized microcapsules with variable conductivities from self-assembled nanoparticles at interfaces,” ACS Nano, vol. 13, no. 3, pp. 3483–3491, 2019, doi: 10.1021/acsnano.8b09625.
MIHALI, Voichita und Andrei HONCIUC, 2019. Evolution of self-organized microcapsules with variable conductivities from self-assembled nanoparticles at interfaces. ACS Nano. 2019. Bd. 13, Nr. 3, S. 3483–3491. DOI 10.1021/acsnano.8b09625
Mihali, Voichita, and Andrei Honciuc. 2019. “Evolution of Self-Organized Microcapsules with Variable Conductivities from Self-Assembled Nanoparticles at Interfaces.” ACS Nano 13 (3): 3483–91. https://doi.org/10.1021/acsnano.8b09625.
Mihali, Voichita, and Andrei Honciuc. “Evolution of Self-Organized Microcapsules with Variable Conductivities from Self-Assembled Nanoparticles at Interfaces.” ACS Nano, vol. 13, no. 3, 2019, pp. 3483–91, https://doi.org/10.1021/acsnano.8b09625.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.