Title: Applied data science : lessons learned for the data-driven business
et. al : No
Editors: Braschler, Martin
Stadelmann, Thilo
Stockinger, Kurt
Extent : 465
Publisher / Ed. Institution : Springer
Publisher / Ed. Institution: Cham
Issue Date: 14-Jun-2019
Edition: 1. Auflage
License (according to publishing contract) : Licence according to publishing contract
Type of review: Editorial review
Language : English
Subjects : Data science; Lessons learned; Applied science
Subject (DDC) : 005: Computer programming, programs and data
Abstract: This book has two main goals: to define data science through the work of data scientists and their results, namely data products, while simultaneously providing the reader with relevant lessons learned from applied data science projects at the intersection of academia and industry. As such, it is not a replacement for a classical textbook (i.e., it does not elaborate on fundamentals of methods and principles described elsewhere), but systematically highlights the connection between theory, on the one hand, and its application in specific use cases, on the other. With these goals in mind, the book is divided into three parts: Part I pays tribute to the interdisciplinary nature of data science and provides a common understanding of data science terminology for readers with different backgrounds. These six chapters are geared towards drawing a consistent picture of data science and were predominantly written by the editors themselves. Part II then broadens the spectrum by presenting views and insights from diverse authors – some from academia and some from industry, ranging from financial to health and from manufacturing to e-commerce. Each of these chapters describes a fundamental principle, method or tool in data science by analyzing specific use cases and drawing concrete conclusions from them. The case studies presented, and the methods and tools applied, represent the nuts and bolts of data science. Finally, Part III was again written from the perspective of the editors and summarizes the lessons learned that have been distilled from the case studies in Part II. The section can be viewed as a meta-study on data science across a broad range of domains, viewpoints and fields. Moreover, it provides answers to the question of what the mission-critical factors for success in different data science undertakings are. The book targets professionals as well as students of data science: first, practicing data scientists in industry and academia who want to broaden their scope and expand their knowledge by drawing on the authors’ combined experience. Second, decision makers in businesses who face the challenge of creating or implementing a data-driven strategy and who want to learn from success stories spanning a range of industries. Third, students of data science who want to understand both the theoretical and practical aspects of data science, vetted by real-world case studies at the intersection of academia and industry.
Departement: School of Engineering
Organisational Unit: Institute of Applied Information Technology (InIT)
Publication type: Book
DOI : 10.1007/978-3-030-11821-1
ISBN: 978-3-030-11820-4
978-3-030-11821-1
URI: https://digitalcollection.zhaw.ch/handle/11475/17420
Published as part of the ZHAW project : DaCoMo - Data-Driven Condition Monitoring
PANOPTES
Appears in Collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.