Title: Computational stent placement in transcatheter aortic valve implantation
Authors : Russ, Christoph
Hopf, Raoul
Sündermann, Simon H.
Born, Silvia
Hirsch, Sven
Falk, Volkmar
Székely, Gábor
Gessat, Michael
Proceedings: Biomedical Simulation
Pages : 95
Pages to: 105
Conference details: 6th International Symposium, ISBMS 2014, Strasbourg, France, 16-17 October 2014
Publisher / Ed. Institution : Springer
Publisher / Ed. Institution: Cham
Issue Date: 2014
License (according to publishing contract) : Licence according to publishing contract
Series : Lecture Notes in Computer Science
Series volume: 8789
Type of review: Peer review (Publication)
Language : English
Subject (DDC) : 617: Surgery
Abstract: Transcatheter aortic valve implantation (TAVI) is a minimally invasive procedure to treat severe aortic stenosis in patients with a high risk for conventional surgery. In-silico experiments of stent deployment within patient-specific models of the aortic root have created an opportunity to predict stent behavior during the intervention. Current limitations in procedure planning are a primary motivator for these simulations. The virtual stent placement preceding the deployment phase of such experiments has major influence on the outcome of the simulation, but only received little attention in literature up to now. This work presents a methodical approach to patient-specific planning of placement of self-expanding stent models by analyzing experimental outcomes of different sets of boundary conditions constraining the stent. As a results, different paradigms for automated or expert guided stent placement are evaluated, which demonstrate the benefits of virtual stent deployment for intervention planning. To build a predictive planning pipeline for TAVI we use an automatic segmentation of the aorta, aortic root and left ventricle, which is converted to a finite element mesh. The virtual stent is then placed along a guide wire model and deployed at multiple locations around the aortic root. The simulation has been evaluated using pre- and post-interventional CT scans with an average relative circumferential error of 4.0% (±2.5%), which is less than half of the average difference in circumference between individual stent sizes (8.6%). Our methods are therefore enabling patient-specific planning and provide better guidance during the intervention.
Departement: Life Sciences and Facility Management
Organisational Unit: Institute of Applied Simulation (IAS)
Publication type: Conference Paper
DOI : 10.1007/978-3-319-12057-7_11
ISBN: 978-3-319-12056-0
978-3-319-12057-7
ISSN: 0302-9743
1611-3349
URI: https://digitalcollection.zhaw.ch/handle/11475/13625
Appears in Collections:Publikationen Life Sciences und Facility Management

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.