Publikationstyp: Beitrag in wissenschaftlicher Zeitschrift
Art der Begutachtung: Peer review (Publikation)
Titel: Observing chemical reactions by time-resolved high-resolution neutron imaging
Autor/-in: Terreni, Jasmin
Trottmann, Matthias
Delmelle, Renaud
Heel, Andre
Trtik, Pavel
Lehmann, Eberhard H.
Borgschulte, Andreas
DOI: 10.1021/acs.jpcc.8b07321
Erschienen in: The Journal of Physical Chemistry C
Band(Heft): 122
Heft: 41
Seite(n): 23574
Seiten bis: 23581
Erscheinungsdatum: 21-Sep-2018
Verlag / Hrsg. Institution: American Chemical Society
ISSN: 1932-7447
Sprache: Deutsch
Schlagwörter: CO2 methanation; Sorption enhanced; Neutron imaging
Fachgebiet (DDC): 540: Chemie
Zusammenfassung: We developed an operando technique based on time-resolved high-resolution neutron imaging to map the water concentration distribution inside millimeter-sized catalyst beads catalyzing the sorption-enhanced CO2 methanation reaction. By combining the spatially resolved results from neutron microscopy with the space-integrated reaction kinetics by gas analysis, we are able to study the reaction kinetics including production rates of molecules and mass transport on the mesoscale. We find that the diffusion of water through catalysts is a critical reaction constraint for the sorption-enhanced methanation reaction. We derive the Thiele parameter of a technical catalyst as a quantitative measure, supporting the materials and reactor design of sorption-enhanced methanation. From this, we conclude that nanostructuring sorption catalysts to shorten the diffusion pathway is advantageous over physical mixtures of macroscopic sorbents and catalysts, resulting in long diffusion path lengths. Water accumulation inducing a neutron contrast is specific to a few sorption-enhanced reactions. To extend the applicability of the method to other catalytic systems without sorption enhancement, we introduce a combination of neutron microscopy with steady-state isotopic transient kinetic analysis: hydrogen−deuterium exchange as a measure of the catalytic activity can be followed by neutron imaging.
Volltext Version: Publizierte Version
Lizenz (gemäss Verlagsvertrag): Lizenz gemäss Verlagsvertrag
Departement: School of Engineering
Organisationseinheit: Institute of Materials and Process Engineering (IMPE)
Publiziert im Rahmen des ZHAW-Projekts: SMARTCAT - Entwicklung eines „Smart-Konzepts“ für ein Biogas-Upgrade durch kontinuierliche CO2 Methanisierung
Enthalten in den Sammlungen:Publikationen School of Engineering

Dateien zu dieser Ressource:
Es gibt keine Dateien zu dieser Ressource.
Zur Langanzeige

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.