Full metadata record
DC FieldValueLanguage
dc.contributor.authorTerreni, Jasmin-
dc.contributor.authorTrottmann, Matthias-
dc.contributor.authorDelmelle, Renaud-
dc.contributor.authorHeel, Andre-
dc.contributor.authorTrtik, Pavel-
dc.contributor.authorLehmann, Eberhard H.-
dc.contributor.authorBorgschulte, Andreas-
dc.date.accessioned2018-11-14T10:19:20Z-
dc.date.available2018-11-14T10:19:20Z-
dc.date.issued2018-09-21-
dc.identifier.issn1932-7447de_CH
dc.identifier.issn1932-7455de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/12790-
dc.description.abstractWe developed an operando technique based on time-resolved high-resolution neutron imaging to map the water concentration distribution inside millimeter-sized catalyst beads catalyzing the sorption-enhanced CO2 methanation reaction. By combining the spatially resolved results from neutron microscopy with the space-integrated reaction kinetics by gas analysis, we are able to study the reaction kinetics including production rates of molecules and mass transport on the mesoscale. We find that the diffusion of water through catalysts is a critical reaction constraint for the sorption-enhanced methanation reaction. We derive the Thiele parameter of a technical catalyst as a quantitative measure, supporting the materials and reactor design of sorption-enhanced methanation. From this, we conclude that nanostructuring sorption catalysts to shorten the diffusion pathway is advantageous over physical mixtures of macroscopic sorbents and catalysts, resulting in long diffusion path lengths. Water accumulation inducing a neutron contrast is specific to a few sorption-enhanced reactions. To extend the applicability of the method to other catalytic systems without sorption enhancement, we introduce a combination of neutron microscopy with steady-state isotopic transient kinetic analysis: hydrogen−deuterium exchange as a measure of the catalytic activity can be followed by neutron imaging.de_CH
dc.language.isodede_CH
dc.publisherAmerican Chemical Societyde_CH
dc.relation.ispartofThe Journal of Physical Chemistry Cde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectCO2 methanationde_CH
dc.subjectSorption enhancedde_CH
dc.subjectNeutron imagingde_CH
dc.subject.ddc540: Chemiede_CH
dc.titleObserving chemical reactions by time-resolved high-resolution neutron imagingde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Materials and Process Engineering (IMPE)de_CH
dc.identifier.doi10.1021/acs.jpcc.8b07321de_CH
zhaw.funding.euNode_CH
zhaw.issue41de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end23581de_CH
zhaw.pages.start23574de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume122de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.funding.snfNRP70: CO2 Reduction & Reusede_CH
zhaw.webfeedProzesstechnikde_CH
zhaw.funding.zhawSMARTCAT - Entwicklung eines „Smart-Konzepts“ für ein Biogas-Upgrade durch kontinuierliche CO2 Methanisierungde_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.