Please use this identifier to cite or link to this item:
https://doi.org/10.21256/zhaw-12340
Publication type: | Article in scientific journal |
Type of review: | Peer review (publication) |
Title: | Pore network simulations of heat and mass transfer inside an unsaturated capillary porous wick in the dry-out regime |
Authors: | Le, Kieu Hiep Kharaghani, Abdolreza Kirsch, Christoph Tsotsas, Evangelos |
DOI: | 10.1007/s11242-016-0737-4 10.21256/zhaw-12340 |
Published in: | Transport in Porous Media |
Volume(Issue): | 114 |
Issue: | 3 |
Page(s): | 623 |
Pages to: | 648 |
Issue Date: | 2016 |
Publisher / Ed. Institution: | Springer |
ISSN: | 0169-3913 1573-1634 |
Language: | English |
Subject (DDC): | 530: Physics |
Abstract: | In this work, a two-dimensional pore network model is developed to study the heat and mass transfer inside a capillary porous wick with opposite replenishment in the dry-out regime. The mass flow rate in each throat of the pore network is computed according to the Hagen-Poiseuille law, and the heat flux is calculated based on Fourier’s law with an effective local thermal conductivity. By coupling the heat and the mass transfer, a numerical method is devised to determine the evolution of the liquid-vapor interface. The model is verified by comparing the effective heat transfer coefficient versus heat load with experimental observations. For increasing heat load, an inflation/deflation of the vapor pocket is observed. The influences of microstructural properties on the vapor pocket pattern and on the effective heat transfer coefficient are discussed: A porous wick with a non-uniform or bimodal pore size distribution results in a larger heat transfer coefficient compared to a porous wick with a uniform pore size distribution. The heat and mass transfer efficiency of a porous wick comprised of two connected regions of small and large pores is also examined. The simulation results indicate that the introduction of a coarse layer with a suitable thickness strongly enhances the heat transfer coefficient. |
Further description: | Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch) |
URI: | https://digitalcollection.zhaw.ch/handle/11475/12340 |
Fulltext version: | Published version |
License (according to publishing contract): | Licence according to publishing contract |
Departement: | School of Engineering |
Organisational Unit: | Institute of Computational Physics (ICP) |
Appears in collections: | Publikationen School of Engineering |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2016_Le_Pore-Network-Simulations-Of-Heat_TPM.pdf | 3.41 MB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.