Title: Effective topologies for computation in cortex-like networks
Authors : Rohrkemper, Robert
Advisors / Reviewers : Douglas, Rodney James
Hahnloser, Richard
Extent : 214
Publisher / Ed. Institution : Eidgenössische Technische Hochschule ETH Zürich
Publisher / Ed. Institution: Zürich
Issue Date: 2009
License (according to publishing contract) : CC BY-NC 1.0: Namensnennung - Nicht kommerziell 1.0 Generic
Language : English
Subject (DDC) : 004: Computer science
Abstract: A principle goal of Neuroscience is to understand how brain-like computations are enabled by the structure of the cortex. Complex developmental processes required to build and maintain the cortex point to the importance of the brain’s structural properties. During development, significant resources, time, and energy are required—suggesting a need to optimize to build the best structure possible. In this work, tools have been developed based on state transition analysis for understanding when computational performance is enhanced by changes in the topology. A dynamic state is defined as the set of neurons that are active at any moment. This state changes as neurons are affected by external and recurrent inputs. In these reservoirs of linear-threshold neurons, performance can be optimized by evaluating the learning capacity of a network when parameters are changed. It is demonstrated that both having more unique states and more transitions between these states will improve the ability of the network to learn and match a target signal with a higher precision. These results allow for optimizing the computational abilities of a small group of neurons by changing the network topology.
Departement: School of Management and Law
Organisational Unit: Institute of Business Information Technology (IWI)
Publication type: Doctoral Thesis
DOI : 10.3929/ethz-a-005951784
ISBN: 978-3847327462
URI: https://digitalcollection.zhaw.ch/handle/11475/8658
Appears in Collections:Publikationen School of Management and Law

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.