Please use this identifier to cite or link to this item:
Publication type: Article in scientific journal
Type of review: Not specified
Title: Natural selection at coding and non-coding DNA mainly affects pathogenicity-related genes in the hemibiotrophic fungus Colletotrichum graminicola
Authors: Rech, Gabriel E.
Sanz-Martín, José M.
Anisimova, Maria
Sukno, Serenella A.
Thon, Michael R.
DOI: 10.21256/zhaw-3888
Published in: Genome Biology and Evolution
Volume(Issue): 6
Issue: 9
Page(s): 2368
Pages to: 2379
Issue Date: 2014
Publisher / Ed. Institution: Oxford University Press
ISSN: 1759-6653
Language: English
Subjects: Positive selection; PAML; Colletotrichum graminicola; Pathogenicity; Arms race hypothesis
Subject (DDC): 570: Biology
572: Biochemistry
Abstract: Natural selection leaves imprints on DNA, offering the opportunity to identify functionally important regions of the genome. Identifying the genomic regions affected by natural selection within pathogens can aid in the pursuit of effective strategies to control diseases. In this study, we analyzed genome-wide patterns of selection acting on different classes of sequences in a worldwide sample of eight strains of the model plant-pathogenic fungus Colletotrichum graminicola. We found evidence of selective sweeps, balancing selection, and positive selection affecting both protein-coding and noncoding DNA of pathogenicity-related sequences. Genes encoding putative effector proteins and secondary metabolite biosynthetic enzymes show evidence of positive selection acting on the coding sequence, consistent with an Arms Race model of evolution. The 5′ untranslated regions (UTRs) of genes coding for effector proteins and genes upregulated during infection show an excess of high-frequency polymorphisms likely the consequence of balancing selection and consistent with the Red Queen hypothesis of evolution acting on these putative regulatory sequences. Based on the findings of this work, we propose that even though adaptive substitutions on coding sequences are important for proteins that interact directly with the host, polymorphisms in the regulatory sequences may confer flexibility of gene expression in the virulence processes of this important plant pathogen.
Fulltext version: Published version
License (according to publishing contract): CC BY 4.0: Attribution 4.0 International
Departement: Life Sciences and Facility Management
Organisational Unit: Institute of Computational Life Sciences (ICLS)
Appears in collections:Publikationen Life Sciences und Facility Management

Files in This Item:
File Description SizeFormat 
evu192.pdf645.5 kBAdobe PDFThumbnail

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.