Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-7040
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKnapp, Evelyne-
dc.contributor.authorRuhstaller, Beat-
dc.date.accessioned2018-06-18T09:40:37Z-
dc.date.available2018-06-18T09:40:37Z-
dc.date.issued2011-10-11-
dc.identifier.issn0306-8919de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/7040-
dc.description.abstractA one-dimensional numerical model for the simulation of organic semiconductor devices such as organic light-emitting devices and solar cells is presented. The model accounts for the energetic disorder in organic semiconductors and assumes that charge transport takes place by a hopping process between uncorrelated sites. Therefore a Gaussian density of states and the use of the Fermi-Dirac statistics are introduced. The model includes density-, field- and temperature-dependent mobilities as well as the generalized Einstein relation. The numerical methods to solve the underlying drift-diffusion problem perform well in combination with the novel physical model ingredients. We demonstrate efficient numerical techniques that we employ to simulate common experimental characterization techniques such as current-voltage, dark-injection transient and electrical impedance measurements. This is crucial for physical model validation and for material parameter extraction. We also highlight how the numerical solution of the novel model differs from the analytical solution of the simplified drift-only model.de_CH
dc.language.isoende_CH
dc.publisherKluwerde_CH
dc.relation.ispartofOptical and Quantum Electronicsde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subject.ddc530: Physikde_CH
dc.subject.ddc621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnikde_CH
dc.titleNumerical analysis of steady-state and transient charge transport in organic semiconductor devicesde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.1007/s11082-011-9443-1de_CH
dc.identifier.doi10.21256/zhaw-7040-
zhaw.funding.euNode_CH
zhaw.issue11–13de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end677de_CH
zhaw.pages.start667de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume42de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
Knapp-Ruhstaller2011_Article_NumericalAnalysisOfSteady-stat.pdf528.28 kBAdobe PDFThumbnail
View/Open
Show simple item record
Knapp, E., & Ruhstaller, B. (2011). Numerical analysis of steady-state and transient charge transport in organic semiconductor devices. Optical and Quantum Electronics, 42(11–13), 667–677. https://doi.org/10.1007/s11082-011-9443-1
Knapp, E. and Ruhstaller, B. (2011) ‘Numerical analysis of steady-state and transient charge transport in organic semiconductor devices’, Optical and Quantum Electronics, 42(11–13), pp. 667–677. Available at: https://doi.org/10.1007/s11082-011-9443-1.
E. Knapp and B. Ruhstaller, “Numerical analysis of steady-state and transient charge transport in organic semiconductor devices,” Optical and Quantum Electronics, vol. 42, no. 11–13, pp. 667–677, Oct. 2011, doi: 10.1007/s11082-011-9443-1.
KNAPP, Evelyne und Beat RUHSTALLER, 2011. Numerical analysis of steady-state and transient charge transport in organic semiconductor devices. Optical and Quantum Electronics. 11 Oktober 2011. Bd. 42, Nr. 11–13, S. 667–677. DOI 10.1007/s11082-011-9443-1
Knapp, Evelyne, and Beat Ruhstaller. 2011. “Numerical Analysis of Steady-State and Transient Charge Transport in Organic Semiconductor Devices.” Optical and Quantum Electronics 42 (11–13): 667–77. https://doi.org/10.1007/s11082-011-9443-1.
Knapp, Evelyne, and Beat Ruhstaller. “Numerical Analysis of Steady-State and Transient Charge Transport in Organic Semiconductor Devices.” Optical and Quantum Electronics, vol. 42, no. 11–13, Oct. 2011, pp. 667–77, https://doi.org/10.1007/s11082-011-9443-1.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.