Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-1989
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKnapp, Evelyne-
dc.contributor.authorHäusermann, Roger-
dc.contributor.authorSchwarzenbach, Hansueli-
dc.contributor.authorRuhstaller, Beat-
dc.date.accessioned2018-06-15T11:23:48Z-
dc.date.available2018-06-15T11:23:48Z-
dc.date.issued2010-07-
dc.identifier.issn0021-8979de_CH
dc.identifier.issn1089-7550de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/6923-
dc.description.abstractFor the design of organic semiconductor devices such as organic light-emitting devices and solar cells, it is of crucial importance to solve the underlying charge transport equations efficiently and accurately. Only a fast and robust solver allows the use of fitting algorithms for parameter extraction and variation. Introducing appropriate models for organic semiconductors that account for the disordered nature of hopping transport leads to increasingly nonlinear and more strongly coupled equations. The solution procedures we present in this study offer a versatile, robust, and efficient means of simulating organic semiconductor devices. They allow for the direct solution of the steady-state drift-diffusion problem. We demonstrate that the numerical methods perform well in combination with advanced physical transport models such as energetic Gaussian disorder, density-dependent and field-dependent mobilities, the generalized Einstein diffusion, traps, and its consistent charge injection model. de_CH
dc.language.isoende_CH
dc.publisherAmerican Institute of Physicsde_CH
dc.relation.ispartofJournal of Applied Physicsde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subject.ddc530: Physikde_CH
dc.titleNumerical simulation of charge transport in disordered organic semiconductor devicesde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
dc.identifier.doi10.21256/zhaw-1989-
dc.identifier.doi10.1063/1.3475505de_CH
zhaw.funding.euinfo:eu-repo/grantAgreement/EC/FP7/213708//Advanced experimentally validated integrated OLED model for a breakthrough in high-performance OLED technology/AEVIOMde_CH
zhaw.issue5de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end054504-8de_CH
zhaw.pages.start054504-1de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume108de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2010_Knapp_Numerical_simulation_of_charge_transport.pdf222.12 kBAdobe PDFThumbnail
View/Open
Show simple item record
Knapp, E., Häusermann, R., Schwarzenbach, H., & Ruhstaller, B. (2010). Numerical simulation of charge transport in disordered organic semiconductor devices. Journal of Applied Physics, 108(5), 054504–054501. https://doi.org/10.21256/zhaw-1989
Knapp, E. et al. (2010) ‘Numerical simulation of charge transport in disordered organic semiconductor devices’, Journal of Applied Physics, 108(5), pp. 054504–1–054504–8. Available at: https://doi.org/10.21256/zhaw-1989.
E. Knapp, R. Häusermann, H. Schwarzenbach, and B. Ruhstaller, “Numerical simulation of charge transport in disordered organic semiconductor devices,” Journal of Applied Physics, vol. 108, no. 5, pp. 054504–1–054504–8, Jul. 2010, doi: 10.21256/zhaw-1989.
KNAPP, Evelyne, Roger HÄUSERMANN, Hansueli SCHWARZENBACH und Beat RUHSTALLER, 2010. Numerical simulation of charge transport in disordered organic semiconductor devices. Journal of Applied Physics. Juli 2010. Bd. 108, Nr. 5, S. 054504–1–054504–8. DOI 10.21256/zhaw-1989
Knapp, Evelyne, Roger Häusermann, Hansueli Schwarzenbach, and Beat Ruhstaller. 2010. “Numerical Simulation of Charge Transport in Disordered Organic Semiconductor Devices.” Journal of Applied Physics 108 (5): 054504–1. https://doi.org/10.21256/zhaw-1989.
Knapp, Evelyne, et al. “Numerical Simulation of Charge Transport in Disordered Organic Semiconductor Devices.” Journal of Applied Physics, vol. 108, no. 5, July 2010, pp. 054504–1, https://doi.org/10.21256/zhaw-1989.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.