Full metadata record
DC FieldValueLanguage
dc.contributor.authorStauffer, Flurin-
dc.contributor.authorZhang, Qiang-
dc.contributor.authorTybrandt, Klas-
dc.contributor.authorLlerena Zambrano, Byron-
dc.contributor.authorHengsteler, Julian-
dc.contributor.authorStoll, André-
dc.contributor.authorTrüeb, Camill-
dc.contributor.authorHagander, Michael-
dc.contributor.authorSujata, Jean-Marc-
dc.contributor.authorHoffmann, Felix-
dc.contributor.authorSchuurmans Stekhoven, Joy-
dc.contributor.authorQuack, Josefine-
dc.contributor.authorZilly, Hannes-
dc.contributor.authorGoedejohann, Johannes-
dc.contributor.authorSchneider, Marc P.-
dc.contributor.authorKessler, Thomas M.-
dc.contributor.authorTaylor, William R.-
dc.contributor.authorKüng, Roland-
dc.contributor.authorVörös, János-
dc.date.accessioned2018-05-24T14:28:11Z-
dc.date.available2018-05-24T14:28:11Z-
dc.date.issued2018-05-
dc.identifier.issn2365-709Xde_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/6069-
dc.description.abstractSensing mechanical tissue deformation in vivo can provide detailed information on organ functionality and tissue states. To bridge the huge mechanical mismatch between conventional electronics and biological tissues, stretchable electronic systems have recently been developed for interfacing tissues in healthcare applications. A major challenge for wireless electronic implants is that they typically require microchips, which adds complexity and may compromise long‐term stability. Here, a chipless wireless strain sensor technology based on a novel soft conductor with high cyclic stability is reported. The composite material consists of gold‐coated titanium dioxide nanowires embedded in a soft silicone elastomer. The implantable strain sensor is based on an resonant circuit which consists of a stretchable plate capacitor and a coil for inductive readout of its resonance frequency. Successful continuous wireless readout during 50% strain cycles is demonstrated. The sensor element has a Young's modulus of 260 kPa, similar to that of the bladder in order to not impair physiological bladder expansion. A proof‐of‐principle measurement on an ex vivo porcine bladder is presented, which shows the feasibility of the presented materials and devices for continuous, wireless strain monitoring of various tissues and organs in vivo.de_CH
dc.language.isoende_CH
dc.publisherWileyde_CH
dc.relation.ispartofAdvanced Materials Technologiesde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectPassive sensorde_CH
dc.subjectChipless sensorde_CH
dc.subjectStrain sensorde_CH
dc.subjectWirelessde_CH
dc.subjectReaderde_CH
dc.subjectRFIDde_CH
dc.subject.ddc004: Informatikde_CH
dc.subject.ddc610: Medizin und Gesundheitde_CH
dc.titleSoft electronic strain sensor with chipless wireless readout : toward real-time monitoring of bladder volumede_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Signal Processing and Wireless Communications (ISC)de_CH
dc.identifier.doi10.1002/admt.201800031de_CH
zhaw.funding.euNode_CH
zhaw.issue6de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end7de_CH
zhaw.pages.start1de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume3de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.webfeedSensorikde_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.
Show simple item record
Stauffer, F., Zhang, Q., Tybrandt, K., Llerena Zambrano, B., Hengsteler, J., Stoll, A., Trüeb, C., Hagander, M., Sujata, J.-M., Hoffmann, F., Schuurmans Stekhoven, J., Quack, J., Zilly, H., Goedejohann, J., Schneider, M. P., Kessler, T. M., Taylor, W. R., Küng, R., & Vörös, J. (2018). Soft electronic strain sensor with chipless wireless readout : toward real-time monitoring of bladder volume. Advanced Materials Technologies, 3(6), 1–7. https://doi.org/10.1002/admt.201800031
Stauffer, F. et al. (2018) ‘Soft electronic strain sensor with chipless wireless readout : toward real-time monitoring of bladder volume’, Advanced Materials Technologies, 3(6), pp. 1–7. Available at: https://doi.org/10.1002/admt.201800031.
F. Stauffer et al., “Soft electronic strain sensor with chipless wireless readout : toward real-time monitoring of bladder volume,” Advanced Materials Technologies, vol. 3, no. 6, pp. 1–7, May 2018, doi: 10.1002/admt.201800031.
STAUFFER, Flurin, Qiang ZHANG, Klas TYBRANDT, Byron LLERENA ZAMBRANO, Julian HENGSTELER, André STOLL, Camill TRÜEB, Michael HAGANDER, Jean-Marc SUJATA, Felix HOFFMANN, Joy SCHUURMANS STEKHOVEN, Josefine QUACK, Hannes ZILLY, Johannes GOEDEJOHANN, Marc P. SCHNEIDER, Thomas M. KESSLER, William R. TAYLOR, Roland KÜNG und János VÖRÖS, 2018. Soft electronic strain sensor with chipless wireless readout : toward real-time monitoring of bladder volume. Advanced Materials Technologies. Mai 2018. Bd. 3, Nr. 6, S. 1–7. DOI 10.1002/admt.201800031
Stauffer, Flurin, Qiang Zhang, Klas Tybrandt, Byron Llerena Zambrano, Julian Hengsteler, André Stoll, Camill Trüeb, et al. 2018. “Soft Electronic Strain Sensor with Chipless Wireless Readout : Toward Real-Time Monitoring of Bladder Volume.” Advanced Materials Technologies 3 (6): 1–7. https://doi.org/10.1002/admt.201800031.
Stauffer, Flurin, et al. “Soft Electronic Strain Sensor with Chipless Wireless Readout : Toward Real-Time Monitoring of Bladder Volume.” Advanced Materials Technologies, vol. 3, no. 6, May 2018, pp. 1–7, https://doi.org/10.1002/admt.201800031.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.