Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-30284
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUlmer, Markus-
dc.contributor.authorZgraggen, Jannik-
dc.contributor.authorGoren Huber, Lilach-
dc.date.accessioned2024-03-16T09:55:58Z-
dc.date.available2024-03-16T09:55:58Z-
dc.date.issued2024-01-26-
dc.identifier.issn2153-2648de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/30284-
dc.description.abstractAnomaly detection (AD) tasks have been solved using machine learning algorithms in various domains and applications. The great majority of these algorithms use normal data to train a residual-based model, and assign anomaly scores to unseen samples based on their dissimilarity with the learned normal regime. The underlying assumption of these approaches is that anomaly-free data is available for training. This is, however, often not the case in real-world operational settings, where the training data may be contaminated with a certain fraction of abnormal samples. Training with contaminated data, in turn, inevitably leads to a deteriorated AD performance of the residual-based algorithms. In this paper we introduce a framework for a fully unsupervised refinement of contaminated training data for AD tasks. The framework is generic and can be applied to any residual-based machine learning model. We demonstrate the application of the framework to two public datasets of multivariate time series machine data from different application fields. We show its clear superiority over the naive approach of training with contaminated data without refinement. Moreover, we compare it to the ideal, unrealistic reference in which anomaly-free data would be available for training. Since the approach exploits information from the anomalies, and not only from the normal regime, it is comparable and often outperforms the ideal baseline as well.de_CH
dc.language.isoende_CH
dc.publisherPrognostics and Health Management Societyde_CH
dc.relation.ispartofInternational Journal of Prognostics and Health Managementde_CH
dc.rightshttps://creativecommons.org/licenses/by/3.0/de_CH
dc.subjectDeep learningde_CH
dc.subjectMachine learningde_CH
dc.subjectAnomaly detectionde_CH
dc.subjectFully unsupervised learningde_CH
dc.subjectContaminated datade_CH
dc.subjectTime seriesde_CH
dc.subjectData refinementde_CH
dc.subjectFault detectionde_CH
dc.subjectAcoustic sensor datade_CH
dc.subjectAircraft enginede_CH
dc.subject.ddc006: Spezielle Computerverfahrende_CH
dc.titleA generic machine learning framework for fully-unsupervised anomaly detection with contaminated datade_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitut für Datenanalyse und Prozessdesign (IDP)de_CH
dc.identifier.doi10.36001/ijphm.2024.v15i1.3589de_CH
dc.identifier.doi10.21256/zhaw-30284-
zhaw.funding.euNode_CH
zhaw.issue1de_CH
zhaw.originated.zhawYesde_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume15de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.webfeedDatalabde_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2024_Ulmer-etal_Generic-ML-framework-for-fully-unsupervised-AD.pdf1.55 MBAdobe PDFThumbnail
View/Open
Show simple item record
Ulmer, M., Zgraggen, J., & Goren Huber, L. (2024). A generic machine learning framework for fully-unsupervised anomaly detection with contaminated data. International Journal of Prognostics and Health Management, 15(1). https://doi.org/10.36001/ijphm.2024.v15i1.3589
Ulmer, M., Zgraggen, J. and Goren Huber, L. (2024) ‘A generic machine learning framework for fully-unsupervised anomaly detection with contaminated data’, International Journal of Prognostics and Health Management, 15(1). Available at: https://doi.org/10.36001/ijphm.2024.v15i1.3589.
M. Ulmer, J. Zgraggen, and L. Goren Huber, “A generic machine learning framework for fully-unsupervised anomaly detection with contaminated data,” International Journal of Prognostics and Health Management, vol. 15, no. 1, Jan. 2024, doi: 10.36001/ijphm.2024.v15i1.3589.
ULMER, Markus, Jannik ZGRAGGEN und Lilach GOREN HUBER, 2024. A generic machine learning framework for fully-unsupervised anomaly detection with contaminated data. International Journal of Prognostics and Health Management. 26 Januar 2024. Bd. 15, Nr. 1. DOI 10.36001/ijphm.2024.v15i1.3589
Ulmer, Markus, Jannik Zgraggen, and Lilach Goren Huber. 2024. “A Generic Machine Learning Framework for Fully-Unsupervised Anomaly Detection with Contaminated Data.” International Journal of Prognostics and Health Management 15 (1). https://doi.org/10.36001/ijphm.2024.v15i1.3589.
Ulmer, Markus, et al. “A Generic Machine Learning Framework for Fully-Unsupervised Anomaly Detection with Contaminated Data.” International Journal of Prognostics and Health Management, vol. 15, no. 1, Jan. 2024, https://doi.org/10.36001/ijphm.2024.v15i1.3589.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.