Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-29385
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBaertsch, Florian-
dc.contributor.authorAmeli, Amir-
dc.contributor.authorMayer, Thomas-
dc.date.accessioned2023-12-15T09:01:52Z-
dc.date.available2023-12-15T09:01:52Z-
dc.date.issued2021-
dc.identifier.issn0733-9399de_CH
dc.identifier.issn1943-7889de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/29385-
dc.description.abstractAdditive manufacturing technologies such as fused filament fabrication (FFF) allow the production of metastructures with global properties that can be tailored to their specific application. This study simulated and optimized an auxetic re-entrant structure with a stiffness gradient for enhanced energy absorption with low acceleration peaks under different low-velocity impact conditions. The finite-element method (FEM) was used, and appropriate constitutive models were fitted to static and dynamic tensile and compressive data of acrylonitrile butadiene styrene (ABS) tested under various strain rates. A Johnson–Cook plasticity model demonstrated the best compromise between accuracy and computational efficiency. A simulation strategy using explicit FEM was developed to simulate additively manufactured auxetic metastructures under impact conditions. There was good agreement between the model prediction and the experimentally observed structural response. A parametric optimization was implemented to enhance the energy absorption capability with low acceleration peaks of a graded auxetic re-entrant structure for different impact velocities.de_CH
dc.language.isoende_CH
dc.publisherAmerican Society of Civil Engineersde_CH
dc.relation.ispartofJournal of Engineering Mechanicsde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subject3D printde_CH
dc.subjectAdditive manufacturing technologyde_CH
dc.subjectFused filament fabrication (FFF)de_CH
dc.subjectEnergy absorbtionde_CH
dc.subject.ddc670: Industrielle und handwerkliche Fertigungde_CH
dc.titleFinite-element modeling and optimization of 3D-printed auxetic reentrant structures with stiffness gradient under low-velocity impactde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitut für Mechanische Systeme (IMES)de_CH
dc.identifier.doi10.1061/(ASCE)EM.1943-7889.0001923de_CH
dc.identifier.doi10.21256/zhaw-29385-
zhaw.funding.euNode_CH
zhaw.issue7de_CH
zhaw.originated.zhawYesde_CH
zhaw.publication.statusacceptedVersionde_CH
zhaw.volume147de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.webfeedAdditive Manufacturingde_CH
zhaw.webfeedMM Mechanics for Modellingde_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2021_Baertsch-etal_Finite-element-modeling-optimization-3D-printed-structures_finalDraft.pdfAkzeptierte Version2.45 MBAdobe PDFThumbnail
View/Open
Show simple item record
Baertsch, F., Ameli, A., & Mayer, T. (2021). Finite-element modeling and optimization of 3D-printed auxetic reentrant structures with stiffness gradient under low-velocity impact. Journal of Engineering Mechanics, 147(7). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001923
Baertsch, F., Ameli, A. and Mayer, T. (2021) ‘Finite-element modeling and optimization of 3D-printed auxetic reentrant structures with stiffness gradient under low-velocity impact’, Journal of Engineering Mechanics, 147(7). Available at: https://doi.org/10.1061/(ASCE)EM.1943-7889.0001923.
F. Baertsch, A. Ameli, and T. Mayer, “Finite-element modeling and optimization of 3D-printed auxetic reentrant structures with stiffness gradient under low-velocity impact,” Journal of Engineering Mechanics, vol. 147, no. 7, 2021, doi: 10.1061/(ASCE)EM.1943-7889.0001923.
BAERTSCH, Florian, Amir AMELI und Thomas MAYER, 2021. Finite-element modeling and optimization of 3D-printed auxetic reentrant structures with stiffness gradient under low-velocity impact. Journal of Engineering Mechanics. 2021. Bd. 147, Nr. 7. DOI 10.1061/(ASCE)EM.1943-7889.0001923
Baertsch, Florian, Amir Ameli, and Thomas Mayer. 2021. “Finite-Element Modeling and Optimization of 3D-Printed Auxetic Reentrant Structures with Stiffness Gradient under Low-Velocity Impact.” Journal of Engineering Mechanics 147 (7). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001923.
Baertsch, Florian, et al. “Finite-Element Modeling and Optimization of 3D-Printed Auxetic Reentrant Structures with Stiffness Gradient under Low-Velocity Impact.” Journal of Engineering Mechanics, vol. 147, no. 7, 2021, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001923.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.