Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-28380
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHeeb, Norbert V.-
dc.contributor.authorHubeli, Jasmin-
dc.contributor.authorFleischmann, Thomas-
dc.contributor.authorLienemann, Peter-
dc.contributor.authorNayyar, Namita-
dc.contributor.authorLal, Rup-
dc.contributor.authorKohler, Hans-Peter E.-
dc.date.accessioned2023-08-04T08:35:19Z-
dc.date.available2023-08-04T08:35:19Z-
dc.date.issued2020-12-07-
dc.identifier.issn0045-6535de_CH
dc.identifier.issn1879-1298de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/28380-
dc.description.abstractHexabromocyclododecanes (HBCDs) were used as flame-retardants until their ban in 2013. Among the 16 stereoisomers known, ε-HBCD has the highest symmetry. This makes ε-HBCD an interesting substrate to study the selectivity of biotransformations. We expressed three LinA dehydrohalogenase enzymes in E. coli bacteria, two wild-type, originating from Sphingobium indicum B90A bacteria and LinATM, a triple mutant of LinA2, with mutations of L96C, F113Y and T133 M. These enzymes are involved in the hexachlorocyclohexane (HCH) metabolism, specifically of the insecticide γ-HCH (Lindane). We studied the reactivity of those eight HBCD stereoisomers found in technical HBCD. Furthermore, we compared kinetics and selectivity of these LinA variants with respect to ε-HBCD. LC-MS data indicate that all enzymes converted ε-HBCD to pentabromocyclododecenes (PBCDens). Transformations followed Michaelis-Menten kinetics. Rate constants kcat and enzyme specificities kcat/KM indicate that ε-HBCD conversion was fastest and most specific with LinA2. Only one PBCDen stereoisomer was formed by LinA2, while LinA1 and LinATM produced mixtures of two PBCDE enantiomers at three times lower rates than LinA2. In analogy to the biotransformation of (-)β-HBCD, with selective conversion of dibromides in R-S-configuration, we assume that 1E,5S,6R,9S,10R-PBCDen is the ε-HBCD transformation product from LinA2. Implementing three amino acids of the LinA1 substrate-binding site into LinA2 resulted in a triple mutant with similar kinetics and product specificity like LinA1. Thus, point-directed mutagenesis is an interesting tool to modify the substrate- and product-specificity of LinA enzymes and enlarge their scope to metabolize other halogenated persistent organic pollutants regulated under the Stockholm Convention.de_CH
dc.language.isoende_CH
dc.publisherElsevierde_CH
dc.relation.ispartofChemospherede_CH
dc.rightshttp://creativecommons.org/licenses/by/4.0/de_CH
dc.subjectBiotransformationde_CH
dc.subjectEscherichia colide_CH
dc.subjectHexachlorocyclohexanede_CH
dc.subjectStereoisomerismde_CH
dc.subjectFlame retardantsde_CH
dc.subjectHydrocarbons, brominatedde_CH
dc.subjectSphingomonadaceaede_CH
dc.subject.ddc572: Biochemiede_CH
dc.titleTransformation of ε-HBCD with the Sphingobium Indicum enzymes LinA1, LinA2 and LinATM, a triple mutant of LinA2de_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementLife Sciences und Facility Managementde_CH
zhaw.organisationalunitInstitut für Chemie und Biotechnologie (ICBT)de_CH
dc.identifier.doi10.1016/j.chemosphere.2020.129217de_CH
dc.identifier.doi10.21256/zhaw-28380-
dc.identifier.pmid33321275de_CH
zhaw.funding.euNode_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.start129217de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume267de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Appears in collections:Publikationen Life Sciences und Facility Management

Files in This Item:
File Description SizeFormat 
2020_Heeb-et-al_Transformation-of-the-e-HBCD.pdf4.23 MBAdobe PDFThumbnail
View/Open
Show simple item record
Heeb, N. V., Hubeli, J., Fleischmann, T., Lienemann, P., Nayyar, N., Lal, R., & Kohler, H.-P. E. (2020). Transformation of ε-HBCD with the Sphingobium Indicum enzymes LinA1, LinA2 and LinATM, a triple mutant of LinA2. Chemosphere, 267, 129217. https://doi.org/10.1016/j.chemosphere.2020.129217
Heeb, N.V. et al. (2020) ‘Transformation of ε-HBCD with the Sphingobium Indicum enzymes LinA1, LinA2 and LinATM, a triple mutant of LinA2’, Chemosphere, 267, p. 129217. Available at: https://doi.org/10.1016/j.chemosphere.2020.129217.
N. V. Heeb et al., “Transformation of ε-HBCD with the Sphingobium Indicum enzymes LinA1, LinA2 and LinATM, a triple mutant of LinA2,” Chemosphere, vol. 267, p. 129217, Dec. 2020, doi: 10.1016/j.chemosphere.2020.129217.
HEEB, Norbert V., Jasmin HUBELI, Thomas FLEISCHMANN, Peter LIENEMANN, Namita NAYYAR, Rup LAL und Hans-Peter E. KOHLER, 2020. Transformation of ε-HBCD with the Sphingobium Indicum enzymes LinA1, LinA2 and LinATM, a triple mutant of LinA2. Chemosphere. 7 Dezember 2020. Bd. 267, S. 129217. DOI 10.1016/j.chemosphere.2020.129217
Heeb, Norbert V., Jasmin Hubeli, Thomas Fleischmann, Peter Lienemann, Namita Nayyar, Rup Lal, and Hans-Peter E. Kohler. 2020. “Transformation of ε-HBCD with the Sphingobium Indicum Enzymes LinA1, LinA2 and LinATM, a Triple Mutant of LinA2.” Chemosphere 267 (December): 129217. https://doi.org/10.1016/j.chemosphere.2020.129217.
Heeb, Norbert V., et al. “Transformation of ε-HBCD with the Sphingobium Indicum Enzymes LinA1, LinA2 and LinATM, a Triple Mutant of LinA2.” Chemosphere, vol. 267, Dec. 2020, p. 129217, https://doi.org/10.1016/j.chemosphere.2020.129217.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.