Full metadata record
DC FieldValueLanguage
dc.contributor.authorNeukom, Martin-
dc.contributor.authorZüfle, Simon-
dc.contributor.authorKnapp, Evelyne-
dc.contributor.authorMakha, Mohammed-
dc.contributor.authorHany, Roland-
dc.contributor.authorRuhstaller, Beat-
dc.date.accessioned2018-02-14T08:09:01Z-
dc.date.available2018-02-14T08:09:01Z-
dc.date.issued2017-
dc.identifier.issn0927-0248de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/2766-
dc.description.abstractThere is increasing evidence that the presence of mobile ions in perovskite solar cells can cause a current-voltage curve hysteresis. However, it is still subject of ongoing debates how exactly mobile ions influence the device operation. We use drift-diffusion simulations incorporating mobile ions to describe IV-curves of preconditioned methylammonium lead iodide perovskite solar cells and compare them with experimental results. Our simulation results show that the hysteresis depends on the extent of surface recombination and on the diffusion length of charge carriers. We provide a detailed explanation for the reduced hysteresis of perovskite solar cells with high power conversion efficiencies. We find that in high-efficiency solar cells ion migration is still present, but does not cause a hysteresis effect. In these devices charge extraction is mainly driven by diffusion of free electrons and holes.de_CH
dc.language.isoende_CH
dc.publisherElsevierde_CH
dc.relation.ispartofSolar Energy Materials & Solar Cellsde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subject.ddc621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnikde_CH
dc.titleWhy perovskite solar cells with high efficiency show small IV-curve hysteresisde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.1016/j.solmat.2017.05.021de_CH
zhaw.funding.euNode_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end166de_CH
zhaw.pages.start159de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume169de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.webfeedPhotovoltaikde_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.
Show simple item record
Neukom, M., Züfle, S., Knapp, E., Makha, M., Hany, R., & Ruhstaller, B. (2017). Why perovskite solar cells with high efficiency show small IV-curve hysteresis. Solar Energy Materials & Solar Cells, 169, 159–166. https://doi.org/10.1016/j.solmat.2017.05.021
Neukom, M. et al. (2017) ‘Why perovskite solar cells with high efficiency show small IV-curve hysteresis’, Solar Energy Materials & Solar Cells, 169, pp. 159–166. Available at: https://doi.org/10.1016/j.solmat.2017.05.021.
M. Neukom, S. Züfle, E. Knapp, M. Makha, R. Hany, and B. Ruhstaller, “Why perovskite solar cells with high efficiency show small IV-curve hysteresis,” Solar Energy Materials & Solar Cells, vol. 169, pp. 159–166, 2017, doi: 10.1016/j.solmat.2017.05.021.
NEUKOM, Martin, Simon ZÜFLE, Evelyne KNAPP, Mohammed MAKHA, Roland HANY und Beat RUHSTALLER, 2017. Why perovskite solar cells with high efficiency show small IV-curve hysteresis. Solar Energy Materials & Solar Cells. 2017. Bd. 169, S. 159–166. DOI 10.1016/j.solmat.2017.05.021
Neukom, Martin, Simon Züfle, Evelyne Knapp, Mohammed Makha, Roland Hany, and Beat Ruhstaller. 2017. “Why Perovskite Solar Cells with High Efficiency Show Small IV-Curve Hysteresis.” Solar Energy Materials & Solar Cells 169: 159–66. https://doi.org/10.1016/j.solmat.2017.05.021.
Neukom, Martin, et al. “Why Perovskite Solar Cells with High Efficiency Show Small IV-Curve Hysteresis.” Solar Energy Materials & Solar Cells, vol. 169, 2017, pp. 159–66, https://doi.org/10.1016/j.solmat.2017.05.021.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.