Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-26697
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSchmid, N.-
dc.contributor.authorBruderer, S.-
dc.contributor.authorParuzzo, F.-
dc.contributor.authorFischetti, G.-
dc.contributor.authorToscano, G.-
dc.contributor.authorGraf, D.-
dc.contributor.authorFey, M.-
dc.contributor.authorHenrici, A.-
dc.contributor.authorZiebart, V.-
dc.contributor.authorHeitmann, B.-
dc.contributor.authorGrabner, H.-
dc.contributor.authorWegner, J.D.-
dc.contributor.authorSigel, R.K.O.-
dc.contributor.authorWilhelm, D.-
dc.date.accessioned2023-01-26T08:58:35Z-
dc.date.available2023-01-26T08:58:35Z-
dc.date.issued2023-02-
dc.identifier.issn1090-7807de_CH
dc.identifier.issn1096-0856de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/26697-
dc.description.abstractThe analysis of nuclear magnetic resonance (NMR) spectra to detect peaks and characterize their parameters, often referred to as deconvolution, is a crucial step in the quantification, elucidation, and verification of the structure of molecular systems. However, deconvolution of 1D NMR spectra is a challenge for both experts and machines. We propose a robust, expert-level quality deep learning-based deconvolution algorithm for 1D experimental NMR spectra. The algorithm is based on a neural network trained on synthetic spectra. Our customized pre-processing and labeling of the synthetic spectra enable the estimation of critical peak parameters. Furthermore, the neural network model transfers well to the experimental spectra and demonstrates low fitting errors and sparse peak lists in challenging scenarios such as crowded, high dynamic range, shoulder peak regions as well as broad peaks. We demonstrate in challenging spectra that the proposed algorithm is superior to expert results.de_CH
dc.language.isoende_CH
dc.publisherElsevierde_CH
dc.relation.ispartofJournal of Magnetic Resonancede_CH
dc.rightshttp://creativecommons.org/licenses/by/4.0/de_CH
dc.subjectNMR spectroscopyde_CH
dc.subjectDeconvolutionde_CH
dc.subjectMachine learningde_CH
dc.subjectDeep learningde_CH
dc.subject.ddc006: Spezielle Computerverfahrende_CH
dc.subject.ddc530: Physikde_CH
dc.titleDeconvolution of 1D NMR spectra : a deep learning-based approachde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitut für Angewandte Mathematik und Physik (IAMP)de_CH
zhaw.organisationalunitInstitut für Datenanalyse und Prozessdesign (IDP)de_CH
dc.identifier.doi10.1016/j.jmr.2022.107357de_CH
dc.identifier.doi10.21256/zhaw-26697-
dc.identifier.pmid36563418de_CH
zhaw.funding.euNode_CH
zhaw.issue107357de_CH
zhaw.originated.zhawYesde_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume347de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.webfeedDatalabde_CH
zhaw.funding.zhawMaschinelles Lernen für NMR-Spektroskopiede_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2022_Schmid-etal_Deconvolution-of-1D-NMR-spectra_JMR.pdf2.43 MBAdobe PDFThumbnail
View/Open
Show simple item record
Schmid, N., Bruderer, S., Paruzzo, F., Fischetti, G., Toscano, G., Graf, D., Fey, M., Henrici, A., Ziebart, V., Heitmann, B., Grabner, H., Wegner, J. D., Sigel, R. K. O., & Wilhelm, D. (2023). Deconvolution of 1D NMR spectra : a deep learning-based approach. Journal of Magnetic Resonance, 347(107357). https://doi.org/10.1016/j.jmr.2022.107357
Schmid, N. et al. (2023) ‘Deconvolution of 1D NMR spectra : a deep learning-based approach’, Journal of Magnetic Resonance, 347(107357). Available at: https://doi.org/10.1016/j.jmr.2022.107357.
N. Schmid et al., “Deconvolution of 1D NMR spectra : a deep learning-based approach,” Journal of Magnetic Resonance, vol. 347, no. 107357, Feb. 2023, doi: 10.1016/j.jmr.2022.107357.
SCHMID, N., S. BRUDERER, F. PARUZZO, G. FISCHETTI, G. TOSCANO, D. GRAF, M. FEY, A. HENRICI, V. ZIEBART, B. HEITMANN, H. GRABNER, J.D. WEGNER, R.K.O. SIGEL und D. WILHELM, 2023. Deconvolution of 1D NMR spectra : a deep learning-based approach. Journal of Magnetic Resonance. Februar 2023. Bd. 347, Nr. 107357. DOI 10.1016/j.jmr.2022.107357
Schmid, N., S. Bruderer, F. Paruzzo, G. Fischetti, G. Toscano, D. Graf, M. Fey, et al. 2023. “Deconvolution of 1D NMR Spectra : A Deep Learning-Based Approach.” Journal of Magnetic Resonance 347 (107357). https://doi.org/10.1016/j.jmr.2022.107357.
Schmid, N., et al. “Deconvolution of 1D NMR Spectra : A Deep Learning-Based Approach.” Journal of Magnetic Resonance, vol. 347, no. 107357, Feb. 2023, https://doi.org/10.1016/j.jmr.2022.107357.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.