Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-25029
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHerrendörfer, Robert-
dc.contributor.authorCochet, Magali-
dc.contributor.authorSchumacher, Jürgen-
dc.date.accessioned2022-05-30T13:40:27Z-
dc.date.available2022-05-30T13:40:27Z-
dc.date.issued2022-04-08-
dc.identifier.issn1996-1073de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/25029-
dc.description.abstractEvaporative cooling is a promising concept to improve proton exchange membrane fuel cells. While the particular concept based on gas diffusion layers (GDLs) modified with hydrophilic lines (HPILs) has recently been demonstrated, there is a lack in the understanding of the mass and heat transport processes. We have developed a 3-D, non-isothermal, macro-homogeneous numerical model focusing on one interface between a HPIL and an anode gas flow channel (AGFC). In the base case model, water evaporates within a thin film adjacent to the interfaces of the HPIL with the AGFC and with the hydrophobic anode GDL. The largest part of the generated water vapor leaves the cell via the AGFC. The transport to the cathode side is shown to be partly limited by the ab-/desorption into/from the membrane. The cooling due to the latent heat has a strong effect on the local evaporation rate. An increase of the mass transfer coefficient for evaporation leads to a transport limited regime inside the MEA while the transport via the AGFC is limited by evaporation kinetics.de_CH
dc.language.isoende_CH
dc.publisherMDPIde_CH
dc.relation.ispartofEnergiesde_CH
dc.rightshttp://creativecommons.org/licenses/by/4.0/de_CH
dc.subjectProton exchange membrane fuel cellde_CH
dc.subjectModelingde_CH
dc.subjectGas diffusion layerde_CH
dc.subjectWettabilityde_CH
dc.subjectEvaporationde_CH
dc.subjectWater managementde_CH
dc.subjectHeat managementde_CH
dc.subject.ddc621.04: Energietechnikde_CH
dc.titleSimulation of mass and heat transfer in an evaporatively cooled PEM fuel cellde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.3390/en15082734de_CH
dc.identifier.doi10.21256/zhaw-25029-
zhaw.funding.euNode_CH
zhaw.issue8de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.start2734de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume15de_CH
zhaw.publication.reviewOpen peer reviewde_CH
zhaw.funding.zhawSCCER-Mobilityde_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
zhaw.monitoring.costperiod2022de_CH
zhaw.relation.referenceshttps://doi.org/10.5281/zenodo.6421776de_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2022_Herrendoerfer-etal_SimulationOfMassAndHeatTransfer_Energies.pdf25.21 MBAdobe PDFThumbnail
View/Open
Show simple item record
Herrendörfer, R., Cochet, M., & Schumacher, J. (2022). Simulation of mass and heat transfer in an evaporatively cooled PEM fuel cell. Energies, 15(8), 2734. https://doi.org/10.3390/en15082734
Herrendörfer, R., Cochet, M. and Schumacher, J. (2022) ‘Simulation of mass and heat transfer in an evaporatively cooled PEM fuel cell’, Energies, 15(8), p. 2734. Available at: https://doi.org/10.3390/en15082734.
R. Herrendörfer, M. Cochet, and J. Schumacher, “Simulation of mass and heat transfer in an evaporatively cooled PEM fuel cell,” Energies, vol. 15, no. 8, p. 2734, Apr. 2022, doi: 10.3390/en15082734.
HERRENDÖRFER, Robert, Magali COCHET und Jürgen SCHUMACHER, 2022. Simulation of mass and heat transfer in an evaporatively cooled PEM fuel cell. Energies. 8 April 2022. Bd. 15, Nr. 8, S. 2734. DOI 10.3390/en15082734
Herrendörfer, Robert, Magali Cochet, and Jürgen Schumacher. 2022. “Simulation of Mass and Heat Transfer in an Evaporatively Cooled PEM Fuel Cell.” Energies 15 (8): 2734. https://doi.org/10.3390/en15082734.
Herrendörfer, Robert, et al. “Simulation of Mass and Heat Transfer in an Evaporatively Cooled PEM Fuel Cell.” Energies, vol. 15, no. 8, Apr. 2022, p. 2734, https://doi.org/10.3390/en15082734.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.