Please use this identifier to cite or link to this item:
https://doi.org/10.21256/zhaw-23854
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Spinner, Georg Ralph | - |
dc.contributor.author | Federau, Christian | - |
dc.contributor.author | Kozerke, Sebastian | - |
dc.date.accessioned | 2022-01-07T12:56:26Z | - |
dc.date.available | 2022-01-07T12:56:26Z | - |
dc.date.issued | 2021-10 | - |
dc.identifier.issn | 1361-8415 | de_CH |
dc.identifier.issn | 1361-8423 | de_CH |
dc.identifier.uri | https://digitalcollection.zhaw.ch/handle/11475/23854 | - |
dc.description.abstract | The intravoxel incoherent motion (IVIM) model allows to map diffusion (D) and perfusion-related parameters (F and D*). Parameter estimation is, however, error-prone due to the non-linearity of the signal model, the limited signal-to-noise ratio (SNR) and the small volume fraction of perfusion in the in-vivo brain. In the present work, the performance of Bayesian inference was examined in the presence of brain pathologies characterized by hypo- and hyperperfusion. In particular, a hierarchical and a spatial prior were combined. Performance was compared relative to conventional segmented least squares regression, hierarchical prior only (non-segmented and segmented data likelihoods) and a deep learning approach. Realistic numerical brain IVIM simulations were conducted to assess errors relative to ground truth. In-vivo, data of 11 central nervous system cancer patients and 9 patients with acute stroke were acquired. The proposed method yielded reduced error in simulations for both the cancer and acute stroke scenarios compared to other methods across the whole investigated SNR range. The contrast-to-noise ratio of the proposed method was better or on par compared to the other techniques in-vivo. The proposed Bayesian approach hence improves IVIM parameter estimation in brain cancer and acute stroke. | de_CH |
dc.language.iso | en | de_CH |
dc.publisher | Elsevier | de_CH |
dc.relation.ispartof | Medical Image Analysis | de_CH |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | de_CH |
dc.subject | Acute stroke | de_CH |
dc.subject | Bayesian inference | de_CH |
dc.subject | Cancer | de_CH |
dc.subject | Intravoxel incoherent motion imaging | de_CH |
dc.subject | Algorithm | de_CH |
dc.subject | Bayes Theorem | de_CH |
dc.subject | Brain | de_CH |
dc.subject | Diffusion Magnetic Resonance Imaging | de_CH |
dc.subject | Human | de_CH |
dc.subject | Magnetic Resonance Imaging | de_CH |
dc.subject | Motion | de_CH |
dc.subject | Neoplasms | de_CH |
dc.subject | Stroke | de_CH |
dc.subject.ddc | 510: Mathematik | de_CH |
dc.subject.ddc | 616: Innere Medizin und Krankheiten | de_CH |
dc.title | Bayesian inference using hierarchical and spatial priors for intravoxel incoherent motion MR imaging in the brain : analysis of cancer and acute stroke | de_CH |
dc.type | Beitrag in wissenschaftlicher Zeitschrift | de_CH |
dcterms.type | Text | de_CH |
zhaw.departement | Life Sciences und Facility Management | de_CH |
zhaw.organisationalunit | Institut für Computational Life Sciences (ICLS) | de_CH |
dc.identifier.doi | 10.1016/j.media.2021.102144 | de_CH |
dc.identifier.doi | 10.21256/zhaw-23854 | - |
dc.identifier.pmid | 34261009 | de_CH |
zhaw.funding.eu | No | de_CH |
zhaw.issue | 102144 | de_CH |
zhaw.originated.zhaw | No | de_CH |
zhaw.publication.status | publishedVersion | de_CH |
zhaw.volume | 73 | de_CH |
zhaw.publication.review | Peer review (Publikation) | de_CH |
zhaw.funding.snf | 186588, 173952 | de_CH |
zhaw.webfeed | Medical Image Analysis & Data Modeling | de_CH |
zhaw.author.additional | No | de_CH |
zhaw.display.portrait | Yes | de_CH |
Appears in collections: | Publikationen Life Sciences und Facility Management |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2021_Spinner-etal_Bayesian-inference-MR-imaging-brain.pdf | 5.18 MB | Adobe PDF | ![]() View/Open |
Show simple item record
Spinner, G. R., Federau, C., & Kozerke, S. (2021). Bayesian inference using hierarchical and spatial priors for intravoxel incoherent motion MR imaging in the brain : analysis of cancer and acute stroke. Medical Image Analysis, 73(102144). https://doi.org/10.1016/j.media.2021.102144
Spinner, G.R., Federau, C. and Kozerke, S. (2021) ‘Bayesian inference using hierarchical and spatial priors for intravoxel incoherent motion MR imaging in the brain : analysis of cancer and acute stroke’, Medical Image Analysis, 73(102144). Available at: https://doi.org/10.1016/j.media.2021.102144.
G. R. Spinner, C. Federau, and S. Kozerke, “Bayesian inference using hierarchical and spatial priors for intravoxel incoherent motion MR imaging in the brain : analysis of cancer and acute stroke,” Medical Image Analysis, vol. 73, no. 102144, Oct. 2021, doi: 10.1016/j.media.2021.102144.
SPINNER, Georg Ralph, Christian FEDERAU und Sebastian KOZERKE, 2021. Bayesian inference using hierarchical and spatial priors for intravoxel incoherent motion MR imaging in the brain : analysis of cancer and acute stroke. Medical Image Analysis. Oktober 2021. Bd. 73, Nr. 102144. DOI 10.1016/j.media.2021.102144
Spinner, Georg Ralph, Christian Federau, and Sebastian Kozerke. 2021. “Bayesian Inference Using Hierarchical and Spatial Priors for Intravoxel Incoherent Motion MR Imaging in the Brain : Analysis of Cancer and Acute Stroke.” Medical Image Analysis 73 (102144). https://doi.org/10.1016/j.media.2021.102144.
Spinner, Georg Ralph, et al. “Bayesian Inference Using Hierarchical and Spatial Priors for Intravoxel Incoherent Motion MR Imaging in the Brain : Analysis of Cancer and Acute Stroke.” Medical Image Analysis, vol. 73, no. 102144, Oct. 2021, https://doi.org/10.1016/j.media.2021.102144.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.