Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-23382
Full metadata record
DC FieldValueLanguage
dc.contributor.authorComi, Ennio-
dc.contributor.authorKnapp, Evelyne-
dc.contributor.authorWeidmann, Stefano-
dc.contributor.authorKirsch, Christoph-
dc.contributor.authorJenatsch, Sandra-
dc.contributor.authorHiestand, Roman-
dc.contributor.authorRuhstaller, Beat-
dc.date.accessioned2021-11-03T11:48:02Z-
dc.date.available2021-11-03T11:48:02Z-
dc.date.issued2021-
dc.identifier.issn2667-1131de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/23382-
dc.description.abstractBeside fabrication challenges, efficiency loss factors of solar cells such as shunts and an increasing series resistance caused by the sheet resistance of the electrodes, are issues to be tackled when scaling novel photovoltaic devices up from laboratory to industrial size. We present a FEM (Finite Element Method) software that supports the upscaling process from small- to large-area devices. Considering Ohm’s law in the top and bottom electrodes, which are coupled by a vertical current, the software solves for the electric potential distribution in the 2D electrode domains. In addition to steady-state simulations, we introduce a small-signal analysis that allows us to compute the influence of resistive electrodes and defects on the frequency-dependent impedance response. Herein, we describe the implemented numerical model for the AC (alternating current) mode. The steady-state model was validated with measurements using monocrystalline silicon solar cells of several sizes and one cell was intentionally shunted with a laser to demonstrate the fingerprints of these defects in the DC (direct current) and AC response. In a further step, we verify the numerical simulation of the AC model with an analytical solution to a one-dimensional AC model for a simplistic quadratic domain and linearized coupling law. Overall, the presented AC model is able to reproduce and predict the behavior of the measurements of the original and later shunted silicon solar cell. Thereby we have demonstrated that the presented AC model is a powerful tool to study devices in the frequency domain which complements characterization in steady-state.de_CH
dc.language.isoende_CH
dc.publisherElsevierde_CH
dc.relation.ispartofSolar Energy Advancesde_CH
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/de_CH
dc.subjectElectrochemical impedance spectroscopy (EIS)de_CH
dc.subjectLarge-area device simulationde_CH
dc.subjectDevice characterizationde_CH
dc.subjectFinite element method (FEM)de_CH
dc.subjectSilicon solar cellde_CH
dc.subject.ddc621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnikde_CH
dc.titleSinusoidal small-signal (AC) and steady-state (DC) analysis of large-area solar cellsde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.1016/j.seja.2021.100003de_CH
dc.identifier.doi10.21256/zhaw-23382-
zhaw.funding.euNode_CH
zhaw.issue100003de_CH
zhaw.originated.zhawYesde_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume1de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.webfeedPhotovoltaikde_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2021_Comi-etal_Signal-analysis-solar-cells_SolarEnergyAdvances.pdf2.15 MBAdobe PDFThumbnail
View/Open
Show simple item record
Comi, E., Knapp, E., Weidmann, S., Kirsch, C., Jenatsch, S., Hiestand, R., & Ruhstaller, B. (2021). Sinusoidal small-signal (AC) and steady-state (DC) analysis of large-area solar cells. Solar Energy Advances, 1(100003). https://doi.org/10.1016/j.seja.2021.100003
Comi, E. et al. (2021) ‘Sinusoidal small-signal (AC) and steady-state (DC) analysis of large-area solar cells’, Solar Energy Advances, 1(100003). Available at: https://doi.org/10.1016/j.seja.2021.100003.
E. Comi et al., “Sinusoidal small-signal (AC) and steady-state (DC) analysis of large-area solar cells,” Solar Energy Advances, vol. 1, no. 100003, 2021, doi: 10.1016/j.seja.2021.100003.
COMI, Ennio, Evelyne KNAPP, Stefano WEIDMANN, Christoph KIRSCH, Sandra JENATSCH, Roman HIESTAND und Beat RUHSTALLER, 2021. Sinusoidal small-signal (AC) and steady-state (DC) analysis of large-area solar cells. Solar Energy Advances. 2021. Bd. 1, Nr. 100003. DOI 10.1016/j.seja.2021.100003
Comi, Ennio, Evelyne Knapp, Stefano Weidmann, Christoph Kirsch, Sandra Jenatsch, Roman Hiestand, and Beat Ruhstaller. 2021. “Sinusoidal Small-Signal (AC) and Steady-State (DC) Analysis of Large-Area Solar Cells.” Solar Energy Advances 1 (100003). https://doi.org/10.1016/j.seja.2021.100003.
Comi, Ennio, et al. “Sinusoidal Small-Signal (AC) and Steady-State (DC) Analysis of Large-Area Solar Cells.” Solar Energy Advances, vol. 1, no. 100003, 2021, https://doi.org/10.1016/j.seja.2021.100003.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.