Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://doi.org/10.21256/zhaw-22639
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorBonmarin, Mathias-
dc.contributor.authorSteinmetz, Lukas-
dc.contributor.authorSpano, Fabrizio-
dc.contributor.authorGeers, Christoph-
dc.date.accessioned2021-06-11T13:30:04Z-
dc.date.available2021-06-11T13:30:04Z-
dc.date.issued2021-
dc.identifier.issn1094-6969de_CH
dc.identifier.issn1941-0123de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/22639-
dc.description​© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.de_CH
dc.description.abstractThe use of nanoparticles (NP) has been dramatically rising in the recent years and NPs can nowadays be found in various products ranging from food to composite materials or cosmetics. Currently, the most frequently employed NP types are titania (TiO 2 ), as a typical color additive, silica (SiO 2 ), as anticoagulation agent, and silver (Ag) NPs, which are added to textiles, due to their antimicrobial properties. Because of their outstanding physical and mechanical properties, carbon-containing nanomaterials, such as graphene and carbon nanotubes, have also experienced a surge in industrially relevant applications. About 30% of the NPs are suspended in liquids, ranging from water to creams and lotions to car lubricants, followed by applications containing surface-bound (e.g., in textiles) NPs and finally nanocomposites (e.g., polymer-CNT composites). Together with biological and physiological fluids, these matrices render the detection and quantification of NPs fairly complex. The broad range of chemical and biological compositions of these environments, including pH and ionic strength, are often detrimental to the colloidal stability of NPs, potentially causing aggregation or even dissolution effects and therefore render NP analysis fairly challenging.de_CH
dc.language.isoende_CH
dc.publisherIEEEde_CH
dc.relation.ispartofIEEE Instrumentation & Measurement Magazinede_CH
dc.rightsLicence according to publishing contractde_CH
dc.subject.ddc620: Ingenieurwesende_CH
dc.titleUsing lock-in thermography to investigate stimuli-responsive nanoparticles in complex environmentsde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.1109/MIM.2021.9448265de_CH
dc.identifier.doi10.21256/zhaw-22639-
zhaw.funding.euNode_CH
zhaw.issue4de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end10de_CH
zhaw.pages.start3de_CH
zhaw.publication.statusacceptedVersionde_CH
zhaw.volume24de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.webfeedSensors and Measuring Systemsde_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Enthalten in den Sammlungen:Publikationen School of Engineering

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
2021_Bonmarin-etal_Lock-in-thermography-nanoparticles.pdfAccepted Version852.41 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen
Zur Kurzanzeige
Bonmarin, M., Steinmetz, L., Spano, F., & Geers, C. (2021). Using lock-in thermography to investigate stimuli-responsive nanoparticles in complex environments. IEEE Instrumentation & Measurement Magazine, 24(4), 3–10. https://doi.org/10.1109/MIM.2021.9448265
Bonmarin, M. et al. (2021) ‘Using lock-in thermography to investigate stimuli-responsive nanoparticles in complex environments’, IEEE Instrumentation & Measurement Magazine, 24(4), pp. 3–10. Available at: https://doi.org/10.1109/MIM.2021.9448265.
M. Bonmarin, L. Steinmetz, F. Spano, and C. Geers, “Using lock-in thermography to investigate stimuli-responsive nanoparticles in complex environments,” IEEE Instrumentation & Measurement Magazine, vol. 24, no. 4, pp. 3–10, 2021, doi: 10.1109/MIM.2021.9448265.
BONMARIN, Mathias, Lukas STEINMETZ, Fabrizio SPANO und Christoph GEERS, 2021. Using lock-in thermography to investigate stimuli-responsive nanoparticles in complex environments. IEEE Instrumentation & Measurement Magazine. 2021. Bd. 24, Nr. 4, S. 3–10. DOI 10.1109/MIM.2021.9448265
Bonmarin, Mathias, Lukas Steinmetz, Fabrizio Spano, and Christoph Geers. 2021. “Using Lock-in Thermography to Investigate Stimuli-Responsive Nanoparticles in Complex Environments.” IEEE Instrumentation & Measurement Magazine 24 (4): 3–10. https://doi.org/10.1109/MIM.2021.9448265.
Bonmarin, Mathias, et al. “Using Lock-in Thermography to Investigate Stimuli-Responsive Nanoparticles in Complex Environments.” IEEE Instrumentation & Measurement Magazine, vol. 24, no. 4, 2021, pp. 3–10, https://doi.org/10.1109/MIM.2021.9448265.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.