Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://doi.org/10.21256/zhaw-21933
Publikationstyp: Beitrag in wissenschaftlicher Zeitschrift
Art der Begutachtung: Peer review (Publikation)
Titel: Robust covariance estimators for mean-variance portfolio optimization with transaction lots
Autor/-in: Rosadi, Dedi
Setiawan, Ezra Putranda
Templ, Matthias
Filzmoser, Peter
et. al: No
DOI: 10.1016/j.orp.2020.100154
10.21256/zhaw-21933
Erschienen in: Operations Research Perspectives
Band(Heft): 7
Heft: 100154
Erscheinungsdatum: 2020
Verlag / Hrsg. Institution: Elsevier
ISSN: 2214-7160
Sprache: Englisch
Schlagwörter: Finance; Markowitz portfolio; Transaction lot; Robust estimation; Genetic algorithm
Fachgebiet (DDC): 510: Mathematik
Zusammenfassung: This study presents an improvement to the mean-variance portfolio optimization model, by considering both the integer transaction lots and a robust estimator of the covariance matrices. Four robust estimators were tested, namely the Minimum Covariance Determinant, the S, the MM, and the Orthogonalized Gnanadesikan–Kettenring estimator. These integer optimization problems were solved using genetic algorithms. We introduce the lot turnover measure, a modified portfolio turnover, and the Robust Sharpe Ratio as the measure of portfolio performance. Based on the simulation studies and the empirical results, this study shows that the robust estimators outperform the classical MLE when data contain outliers and when the lots have moderate sizes, e.g. 500 shares or less per lot.
URI: https://digitalcollection.zhaw.ch/handle/11475/21933
Volltext Version: Publizierte Version
Lizenz (gemäss Verlagsvertrag): CC BY 4.0: Namensnennung 4.0 International
Departement: School of Engineering
Organisationseinheit: Institut für Datenanalyse und Prozessdesign (IDP)
Enthalten in den Sammlungen:Publikationen School of Engineering

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
2020_Rosadi_etal_Robust-covariance-estimators.pdf2.95 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.