Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-20353
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDavid, Robert O.-
dc.contributor.authorFahrni, Jonas-
dc.contributor.authorMarcolli, Claudia-
dc.contributor.authorMahrt, Fabian-
dc.contributor.authorBrühwiler, Dominik-
dc.contributor.authorKanji, Zamin A.-
dc.date.accessioned2020-08-17T08:29:44Z-
dc.date.available2020-08-17T08:29:44Z-
dc.date.issued2020-08-12-
dc.identifier.issn1680-7316de_CH
dc.identifier.issn1680-7324de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/20353-
dc.description.abstractIt has recently been shown that pore condensation and freezing (PCF) is a mechanism responsible for ice formation under cirrus cloud conditions. PCF is defined as the condensation of liquid water in narrow capillaries below water saturation due to the inverse Kelvin effect, followed by either heterogeneous or homogeneous nucleation depending on the temperature regime and presence of an ice-nucleating active site. By using sol–gel synthesized silica with well-defined pore diameters, morphology and distinct chemical surface-functionalization, the role of the water–silica contact angle and pore width on PCF is investigated. We find that for the pore diameters (2.2–9.2 nm) and water contact angles (15–78°) covered in this study, our results reveal that the water contact angle plays an important role in predicting the humidity required for pore filling, while the pore diameter determines the ability of pore water to freeze. For T>235 K and below water saturation, pore diameters and water contact angles were not able to predict the freezing ability of the particles, suggesting an absence of active sites; thus ice nucleation did not proceed via a PCF mechanism. Rather, the ice-nucleating ability of the particles depended solely on chemical functionalization. Therefore, parameterizations for the ice-nucleating abilities of particles in cirrus conditions should differ from parameterizations at mixed-phase clouds conditions. Our results support PCF as the atmospherically relevant ice nucleation mechanism below water saturation when porous surfaces are encountered in the troposphere.de_CH
dc.language.isoende_CH
dc.publisherCopernicusde_CH
dc.relation.ispartofAtmospheric Chemistry and Physicsde_CH
dc.rightshttp://creativecommons.org/licenses/by/4.0/de_CH
dc.subject.ddc500: Naturwissenschaften und Mathematikde_CH
dc.titleThe role of contact angle and pore width on pore condensation and freezingde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementLife Sciences und Facility Managementde_CH
zhaw.organisationalunitInstitut für Chemie und Biotechnologie (ICBT)de_CH
dc.identifier.doi10.5194/acp-20-9419-2020de_CH
dc.identifier.doi10.21256/zhaw-20353-
zhaw.funding.euNode_CH
zhaw.issue15de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end9440de_CH
zhaw.pages.start9419de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume20de_CH
zhaw.publication.reviewOpen peer reviewde_CH
zhaw.funding.snf156581de_CH
zhaw.funding.zhawUntersuchung der Eisbildungsmechanismen in der Atmosphärede_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Appears in Collections:Publikationen Life Sciences und Facility Management

Files in This Item:
File Description SizeFormat 
2020_David_etal_Contact-angle-and-pore-width_ACP.pdf5.68 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.