Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-19688
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEberlein, Robert-
dc.contributor.authorPasieka, Lucian-
dc.contributor.authorRizos, Dimosthenis-
dc.date.accessioned2020-03-07T10:50:29Z-
dc.date.available2020-03-07T10:50:29Z-
dc.date.issued2019-12-
dc.identifier.issn0976-3961de_CH
dc.identifier.issn0976-397Xde_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/19688-
dc.description.abstractThermoplastic polyurethanes (TPU) have become preferred materials for demanding high strain rate applications in many industries throughout past years. Due to their comparatively high abrasion resistance and toughness, TPU materials form an excellent fit for critical components sustaining high pressures in combination with harsh ambient conditions. This presentation illustrates a comparatively new field of critical applications for TPU components. While the operational pressures remain rather moderate at maximum 50 bar, challenges arise from high-frequency, cyclic loading conditions. In order to design robust dynamic TPU components, two main tasks must be accomplished: (i) visco-elastic-plastic material modeling and parameter identification, and (ii) material validation under realistic dynamic loading conditions on system level by means of advanced finite element (FE) simulations. This article puts (i) emphasis on the material calibration process and (ii) specifically demonstrates material validation on system level for selected TPU materials. In this context strain rate dependency of various TPU grades is discussed, which illustrates deficiencies of classical material modeling techniques available in commercial finite element software versus advanced nonlinear models. Eventually, recommendations are provided for an efficient but also accurate material calibration process of solid TPU materials that can significantly enhance product innovation processes.de_CH
dc.language.isoende_CH
dc.publisherVBRI Pressde_CH
dc.relation.ispartofAdvanced Materials Lettersde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectTPUde_CH
dc.subjectSystem Validationde_CH
dc.subjectMaterial Calibrationde_CH
dc.subjectFE Simulationde_CH
dc.subject.ddc620.11: Werkstoffede_CH
dc.titleValidation of advanced constitutive models for accurate FE modeling of TPUde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitut für Mechanische Systeme (IMES)de_CH
dc.identifier.doi10.5185/amlett.2019.0031de_CH
dc.identifier.doi10.21256/zhaw-19688-
zhaw.funding.euNode_CH
zhaw.issue12de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end898de_CH
zhaw.pages.start893de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume10de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.webfeedSimulation and Optimizationde_CH
zhaw.author.additionalNode_CH
Appears in collections:Publikationen School of Engineering

Show simple item record
Eberlein, R., Pasieka, L., & Rizos, D. (2019). Validation of advanced constitutive models for accurate FE modeling of TPU. Advanced Materials Letters, 10(12), 893–898. https://doi.org/10.5185/amlett.2019.0031
Eberlein, R., Pasieka, L. and Rizos, D. (2019) ‘Validation of advanced constitutive models for accurate FE modeling of TPU’, Advanced Materials Letters, 10(12), pp. 893–898. Available at: https://doi.org/10.5185/amlett.2019.0031.
R. Eberlein, L. Pasieka, and D. Rizos, “Validation of advanced constitutive models for accurate FE modeling of TPU,” Advanced Materials Letters, vol. 10, no. 12, pp. 893–898, Dec. 2019, doi: 10.5185/amlett.2019.0031.
EBERLEIN, Robert, Lucian PASIEKA und Dimosthenis RIZOS, 2019. Validation of advanced constitutive models for accurate FE modeling of TPU. Advanced Materials Letters. Dezember 2019. Bd. 10, Nr. 12, S. 893–898. DOI 10.5185/amlett.2019.0031
Eberlein, Robert, Lucian Pasieka, and Dimosthenis Rizos. 2019. “Validation of Advanced Constitutive Models for Accurate FE Modeling of TPU.” Advanced Materials Letters 10 (12): 893–98. https://doi.org/10.5185/amlett.2019.0031.
Eberlein, Robert, et al. “Validation of Advanced Constitutive Models for Accurate FE Modeling of TPU.” Advanced Materials Letters, vol. 10, no. 12, Dec. 2019, pp. 893–98, https://doi.org/10.5185/amlett.2019.0031.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.