Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-19624
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJenatsch, Sandra-
dc.contributor.authorZüfle, Simon-
dc.contributor.authorBlülle, Balthasar-
dc.contributor.authorRuhstaller, Beat-
dc.date.accessioned2020-03-05T11:36:26Z-
dc.date.available2020-03-05T11:36:26Z-
dc.date.issued2020-01-
dc.identifier.issn0021-8979de_CH
dc.identifier.issn1089-7550de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/19624-
dc.description.abstractTypically, organic light-emitting diodes (OLEDs) are characterized only in steady-state to determine and optimize their efficiency. Adding further electro-optical measurement techniques in frequency and time domain helps to analyze charge carrier and exciton dynamics and provides deeper insights into the device physics. We, therefore, first present an overview of frequently used OLED measurement techniques and analytical models. A multilayer OLED with a sky-blue thermally activated delayed fluorescent dopant material is employed in this study without loss of generality. Combining the measurements with a full device simulation allows one to determine specific material parameters such as the charge carrier mobilities of all the layers. The main part of this tutorial focuses on how to systematically fit the measured OLED characteristics with microscopic device simulations based on a charge drift-diffusion and exciton migration model in 1D. Finally, we analyze the correlation and sensitivity of the determined material parameters and use the obtained device model to understand limitations of the specific OLED device.de_CH
dc.language.isoende_CH
dc.publisherAmerican Institute of Physicsde_CH
dc.relation.ispartofJournal of Applied Physicsde_CH
dc.rightshttp://creativecommons.org/licenses/by/4.0/de_CH
dc.subject.ddc621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnikde_CH
dc.titleCombining steady-state with frequency and time domain data to quantitatively analyze charge transport in organic light-emitting diodesde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.1063/1.5132599de_CH
dc.identifier.doi10.21256/zhaw-19624-
zhaw.funding.euNode_CH
zhaw.issue3de_CH
zhaw.originated.zhawYesde_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume127de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.webfeedPhotonicsde_CH
zhaw.author.additionalNode_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2020_Jenatsch_Combining_steady-state_with_frequency_Journal_of_Applied_Physics.pdf6.58 MBAdobe PDFThumbnail
View/Open
Show simple item record
Jenatsch, S., Züfle, S., Blülle, B., & Ruhstaller, B. (2020). Combining steady-state with frequency and time domain data to quantitatively analyze charge transport in organic light-emitting diodes. Journal of Applied Physics, 127(3). https://doi.org/10.1063/1.5132599
Jenatsch, S. et al. (2020) ‘Combining steady-state with frequency and time domain data to quantitatively analyze charge transport in organic light-emitting diodes’, Journal of Applied Physics, 127(3). Available at: https://doi.org/10.1063/1.5132599.
S. Jenatsch, S. Züfle, B. Blülle, and B. Ruhstaller, “Combining steady-state with frequency and time domain data to quantitatively analyze charge transport in organic light-emitting diodes,” Journal of Applied Physics, vol. 127, no. 3, Jan. 2020, doi: 10.1063/1.5132599.
JENATSCH, Sandra, Simon ZÜFLE, Balthasar BLÜLLE und Beat RUHSTALLER, 2020. Combining steady-state with frequency and time domain data to quantitatively analyze charge transport in organic light-emitting diodes. Journal of Applied Physics. Januar 2020. Bd. 127, Nr. 3. DOI 10.1063/1.5132599
Jenatsch, Sandra, Simon Züfle, Balthasar Blülle, and Beat Ruhstaller. 2020. “Combining Steady-State with Frequency and Time Domain Data to Quantitatively Analyze Charge Transport in Organic Light-Emitting Diodes.” Journal of Applied Physics 127 (3). https://doi.org/10.1063/1.5132599.
Jenatsch, Sandra, et al. “Combining Steady-State with Frequency and Time Domain Data to Quantitatively Analyze Charge Transport in Organic Light-Emitting Diodes.” Journal of Applied Physics, vol. 127, no. 3, Jan. 2020, https://doi.org/10.1063/1.5132599.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.