Publication type: Conference other
Type of review: Peer review (abstract)
Title: Improvement of maintenance timetable stability based on iteratively assigning event flexibility in FPESP
Authors: Wüst, Raimond Matthias
Bütikofer, Stephan
Ess, Severin
Gomez, Claudio
Steiner, Albert
Laumanns, Marco
Szabo, Jacint
et. al: No
Conference details: 8th International Conference on Railway Operations Modelling and Analysis (ICROMA), Norrköping, Sweden, 17-20 June 2019
Issue Date: Jun-2019
Language: English
Subjects: Flexible PESP; Timetable stability analysis; Max Plus Algebra; Mesoscopic infrastructure; Service intention
Subject (DDC): 
Abstract: In the operational management of railway networks, an important requirement is the fast adaptation of timetable scenarios, in which operational disruptions or time windows with temporary unavailability of infrastructure, for instance during maintenance time windows, are taken into consideration. In those situations, easy and fast reconfiguration and recalculation of timetable data is of central importance. This local and temporal rescheduling results in shifted departure and arrival times and sometimes even in modified stop patterns at intermediate stations of train runs. In order to generate reliable timetabling results it is a prerequisite that train-track assignments, as well as operational and commercial dependencies are taken into consideration. In order to refer to the right level of detail for modelling track infrastructure and train dynamics in the computer aided planning process we present a generic model that we call Track-Choice FPESP (TCFPESP), as it implements suitable extensions of the established PESP-model. We show, how the service intention (the data structure for timetable specification) together with resource capacity information entered into a standard timetabling tool like Viriato can be utilized in order to configure the TCFPESP model. In addition, we are able to calculate quantitative performance measures for assessing timetable quality aspects. In order to achieve this we present a method for evaluating travel times based on passenger routings and a method for evaluating timetable robustness based on max-plus algebra. This approach supports the planner to generate integrated periodic timetable solutions in iterative development cycles and taking into account intervals for local maintenance work.
Fulltext version: Published version
License (according to publishing contract): Licence according to publishing contract
Departement: School of Engineering
Organisational Unit: Institute of Data Analysis and Process Design (IDP)
Published as part of the ZHAW project: SBB-Forschungsfonds 'Automatisierte Fahrplanplanung'
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.