Full metadata record
DC FieldValueLanguage
dc.contributor.authorHolzer, Lorenz-
dc.contributor.authorIwanschitz, Boris-
dc.contributor.authorHocker, Thomas-
dc.contributor.authorMünch, Beat-
dc.contributor.authorPrestat, Michel-
dc.contributor.authorWiedenmann, Daniel-
dc.contributor.authorVogt, Uli-
dc.contributor.authorHoltappels, Peter-
dc.contributor.authorSfeir, Josef-
dc.contributor.authorMai, Andreas-
dc.contributor.authorGraule, Thomas-
dc.date.accessioned2017-12-04T14:09:01Z-
dc.date.available2017-12-04T14:09:01Z-
dc.date.issued2011-02-01-
dc.identifier.issn0378-7753de_CH
dc.identifier.issn1873-2755de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/1671-
dc.description.abstractThe effects of compositional and environmental parameters on the kinetics of microstructural degradation are investigated for porous Ni/CGO anodes in solid oxide fuel cells (SOFC). Improved methodologies of SEM-imaging, segmentation and object recognition are described which enable a precise quantification of nickel grain growth over time. Due to these methodological improvements the grain growth can be described precisely with a standard deviation of only 5–15 nm for each time step. In humid atmosphere (60 vol.% H2O, 40% N2/H2) the growth rates of nickel are very high (up to 140%/100 h) during the initial period (<200 h). At longer exposure time (>1000 h) the growth rates decrease significantly to nearly 0%/100 h. In contrast, under dry conditions (97 vol.% N2, 3 vol.% H2) the growth rates during the initial period are much lower (ca. 1%/100 h) but they do not decrease over a period of 2000 h. In addition to the humidity factor there are other environmental and compositional parameters which have a strong influence on the kinetics of the microstructural degradation. The nickel coarsening is strongly depending on the gas flow rate. Also the initial microstructures and the anode compositions have a big effect on the degradation kinetics. Thereby small average grain sizes, wide distribution of particle size and high contents of nickel lead to higher coarsening and degradation rates. Whereas the nickel coarsening appears to be the dominant degradation mechanism during the initial period (<200 h) other degradation phenomena become more important during long exposure time (>1000 h) in humidified gas. Thereby the evaporation of volatile nickel species may lead to a local increase of the Ni/CGO ratio. Due to the surface wetting of CGO a continuous layer tends to form on the surface of the nickel grains which prevents further grain growth and evaporation of nickel. These phenomena lead to a microstructural reorganization between 1000 and 2300 h of exposure. This complex pattern of degradation phenomena also leads to a change of the amount of active microstructural sites that are important for catalytic reactions at the pore-nickel interfaces and for electrochemical reactions at the triple phase boundaries (TPB).de_CH
dc.language.isoende_CH
dc.publisherElsevierde_CH
dc.relation.ispartofJournal of Power Sourcesde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectMicrostructure analysisde_CH
dc.subjectNickel coarseningde_CH
dc.subjectOstwald ripeningde_CH
dc.subjectAnode degradationde_CH
dc.subject.ddc530: Physikde_CH
dc.subject.ddc621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnikde_CH
dc.titleMicrostructure degradation of cermet anodes for solid oxide fuel cells : quantification of nickel grain growth in dry and in humid atmospheresde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.1016/j.jpowsour.2010.08.017de_CH
zhaw.funding.euNode_CH
zhaw.issue3de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end1294de_CH
zhaw.pages.start1279de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume196de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.
Show simple item record
Holzer, L., Iwanschitz, B., Hocker, T., Münch, B., Prestat, M., Wiedenmann, D., Vogt, U., Holtappels, P., Sfeir, J., Mai, A., & Graule, T. (2011). Microstructure degradation of cermet anodes for solid oxide fuel cells : quantification of nickel grain growth in dry and in humid atmospheres. Journal of Power Sources, 196(3), 1279–1294. https://doi.org/10.1016/j.jpowsour.2010.08.017
Holzer, L. et al. (2011) ‘Microstructure degradation of cermet anodes for solid oxide fuel cells : quantification of nickel grain growth in dry and in humid atmospheres’, Journal of Power Sources, 196(3), pp. 1279–1294. Available at: https://doi.org/10.1016/j.jpowsour.2010.08.017.
L. Holzer et al., “Microstructure degradation of cermet anodes for solid oxide fuel cells : quantification of nickel grain growth in dry and in humid atmospheres,” Journal of Power Sources, vol. 196, no. 3, pp. 1279–1294, Feb. 2011, doi: 10.1016/j.jpowsour.2010.08.017.
HOLZER, Lorenz, Boris IWANSCHITZ, Thomas HOCKER, Beat MÜNCH, Michel PRESTAT, Daniel WIEDENMANN, Uli VOGT, Peter HOLTAPPELS, Josef SFEIR, Andreas MAI und Thomas GRAULE, 2011. Microstructure degradation of cermet anodes for solid oxide fuel cells : quantification of nickel grain growth in dry and in humid atmospheres. Journal of Power Sources. 1 Februar 2011. Bd. 196, Nr. 3, S. 1279–1294. DOI 10.1016/j.jpowsour.2010.08.017
Holzer, Lorenz, Boris Iwanschitz, Thomas Hocker, Beat Münch, Michel Prestat, Daniel Wiedenmann, Uli Vogt, et al. 2011. “Microstructure Degradation of Cermet Anodes for Solid Oxide Fuel Cells : Quantification of Nickel Grain Growth in Dry and in Humid Atmospheres.” Journal of Power Sources 196 (3): 1279–94. https://doi.org/10.1016/j.jpowsour.2010.08.017.
Holzer, Lorenz, et al. “Microstructure Degradation of Cermet Anodes for Solid Oxide Fuel Cells : Quantification of Nickel Grain Growth in Dry and in Humid Atmospheres.” Journal of Power Sources, vol. 196, no. 3, Feb. 2011, pp. 1279–94, https://doi.org/10.1016/j.jpowsour.2010.08.017.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.