Full metadata record
DC FieldValueLanguage
dc.contributor.authorLinder, Markus-
dc.contributor.authorHocker, Thomas-
dc.contributor.authorHolzer, Lorenz-
dc.contributor.authorPecho, Omar-
dc.contributor.authorFriedrich, Andreas-
dc.contributor.authorMorawietz, Thomas-
dc.contributor.authorHiesgen, Renate-
dc.contributor.authorKontic, Roman-
dc.contributor.authorIwanschitz, Boris-
dc.contributor.authorMai, Andreas-
dc.contributor.authorSchuler, Andreas-
dc.date.accessioned2017-11-30T14:17:27Z-
dc.date.available2017-11-30T14:17:27Z-
dc.date.issued2015-
dc.identifier.issn0167-2738de_CH
dc.identifier.issn1872-7689de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/1622-
dc.description.abstractOxide scale formation on metallic interconnects contributes to the overall degradation of solid oxide fuel cell (SOFC) stacks. On the anode side, thermally grown oxide scale might contain additional nickel, nickel oxide, or nickel chromium spinel phases – depending on the applied operation conditions. Ni originates from Ni-meshes, often applied as current collector, from Ni-containing anodes or from Ni-containing coatings. Ni particles released during thermo redox cycles from adjacent Ni-containing components might be interspersed into the oxide scale. This study aims at investigating the influence of Ni on the electrical conductivity of oxide scales. For this purpose pellets of Cr2O3 were mixed with different amounts of Ni and then investigated in-situ under both reducing and oxidizing gas atmospheres at 850°C. The formed crystals were analyzed using X-ray diffraction, whereas the resulting microstructures were quantified using scanning electron microscopy. During oxidation Ni is converted into NiO, and the latter interacts with Cr2O3 to form a NiCr2O4 spinel phase. Subsequent exposure to reducing conditions leads to an almost instantaneous decomposition of NiCr2O4 spinel, resulting in finely dispersed elementary Ni. This rearrangement of Ni by spinel decomposition leads to a significant improvement of the electrical conductivity of the Cr2O3 pellets compared to their initial state.de_CH
dc.language.isoende_CH
dc.publisherElsevierde_CH
dc.relation.ispartofSolid State Ionicsde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectInterconnectde_CH
dc.subjectOxidationde_CH
dc.subjectMapde_CH
dc.subjectSOFCde_CH
dc.subject.ddc621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnikde_CH
dc.titleOhmic resistance of nickel infiltrated chromium oxide scales in solid oxide fuel cell metallic interconnectsde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
zhaw.organisationalunitInstitute of Materials and Process Engineering (IMPE)de_CH
dc.identifier.doi10.1016/j.ssi.2015.11.003de_CH
zhaw.funding.euNode_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end51de_CH
zhaw.pages.start38de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume283de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.
Show simple item record
Linder, M., Hocker, T., Holzer, L., Pecho, O., Friedrich, A., Morawietz, T., Hiesgen, R., Kontic, R., Iwanschitz, B., Mai, A., & Schuler, A. (2015). Ohmic resistance of nickel infiltrated chromium oxide scales in solid oxide fuel cell metallic interconnects. Solid State Ionics, 283, 38–51. https://doi.org/10.1016/j.ssi.2015.11.003
Linder, M. et al. (2015) ‘Ohmic resistance of nickel infiltrated chromium oxide scales in solid oxide fuel cell metallic interconnects’, Solid State Ionics, 283, pp. 38–51. Available at: https://doi.org/10.1016/j.ssi.2015.11.003.
M. Linder et al., “Ohmic resistance of nickel infiltrated chromium oxide scales in solid oxide fuel cell metallic interconnects,” Solid State Ionics, vol. 283, pp. 38–51, 2015, doi: 10.1016/j.ssi.2015.11.003.
LINDER, Markus, Thomas HOCKER, Lorenz HOLZER, Omar PECHO, Andreas FRIEDRICH, Thomas MORAWIETZ, Renate HIESGEN, Roman KONTIC, Boris IWANSCHITZ, Andreas MAI und Andreas SCHULER, 2015. Ohmic resistance of nickel infiltrated chromium oxide scales in solid oxide fuel cell metallic interconnects. Solid State Ionics. 2015. Bd. 283, S. 38–51. DOI 10.1016/j.ssi.2015.11.003
Linder, Markus, Thomas Hocker, Lorenz Holzer, Omar Pecho, Andreas Friedrich, Thomas Morawietz, Renate Hiesgen, et al. 2015. “Ohmic Resistance of Nickel Infiltrated Chromium Oxide Scales in Solid Oxide Fuel Cell Metallic Interconnects.” Solid State Ionics 283: 38–51. https://doi.org/10.1016/j.ssi.2015.11.003.
Linder, Markus, et al. “Ohmic Resistance of Nickel Infiltrated Chromium Oxide Scales in Solid Oxide Fuel Cell Metallic Interconnects.” Solid State Ionics, vol. 283, 2015, pp. 38–51, https://doi.org/10.1016/j.ssi.2015.11.003.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.