Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://doi.org/10.21256/zhaw-5507
Publikationstyp: Beitrag in wissenschaftlicher Zeitschrift
Art der Begutachtung: Peer review (Publikation)
Titel: Design of perovskite/crystalline-silicon monolithic tandem solar cells
Autor/-in: Altazin, Stéphane
Stepanova, L.
Werner, J.
Niesen, B.
Ballif, C.
Ruhstaller, B.
DOI: 10.21256/zhaw-5507
10.1364/OE.26.00A579
Erschienen in: Optics Express
Band(Heft): 26
Heft: 10
Seite(n): A579
Seiten bis: A590
Erscheinungsdatum: 2018
Verlag / Hrsg. Institution: Optical Society of America
ISSN: 1094-4087
Sprache: Englisch
Fachgebiet (DDC): 621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnik
Zusammenfassung: We present an optical model implemented in the commercial software SETFOS 4.6 for simulating perovskite/silicon monolithic tandem solar cells that exploit light scattering structures. In a first step we validate the model with experimental data of tandem solar cells that either use front- or rear-side textures and extract the internal quantum efficiency of the methyl-ammonium lead iodide (MALI) perovskite sub-cell. In a next step, the software is used to investigate the potential of different device architectures featuring a monolithic integration between the perovskite and silicon sub-cells and exploiting rear- as well as front-side textures for improved light harvesting. We find that, considering the available contact materials, the p-i-n solar cell architecture is the most promising with respect to achievable photocurrent for both flat and textured wafers. Finally, cesium-formamidinium-based perovskite materials with several bandgaps were synthetized, optically characterized and their potential in a tandem device was quantified by simulations. For the simulated layer stack and among the tested materials with bandgaps of 1.7 and 1.6 eV, the one with 1.6 eV bandgap was found to be the most promising, with a potential of reaching a power conversion efficiency of 31%. In order to achieve higher efficiencies using higher band-gap materials, parasitic absorptance in the blue spectral range should be further reduced.
URI: https://digitalcollection.zhaw.ch/handle/11475/16127
Volltext Version: Publizierte Version
Lizenz (gemäss Verlagsvertrag): CC BY 4.0: Namensnennung 4.0 International
Departement: School of Engineering
Organisationseinheit: Institute of Computational Physics (ICP)
Enthalten in den Sammlungen:Publikationen School of Engineering

Zur Langanzeige
Altazin, S., Stepanova, L., Werner, J., Niesen, B., Ballif, C., & Ruhstaller, B. (2018). Design of perovskite/crystalline-silicon monolithic tandem solar cells. Optics Express, 26(10), A579–A590. https://doi.org/10.21256/zhaw-5507
Altazin, S. et al. (2018) ‘Design of perovskite/crystalline-silicon monolithic tandem solar cells’, Optics Express, 26(10), pp. A579–A590. Available at: https://doi.org/10.21256/zhaw-5507.
S. Altazin, L. Stepanova, J. Werner, B. Niesen, C. Ballif, and B. Ruhstaller, “Design of perovskite/crystalline-silicon monolithic tandem solar cells,” Optics Express, vol. 26, no. 10, pp. A579–A590, 2018, doi: 10.21256/zhaw-5507.
ALTAZIN, Stéphane, L. STEPANOVA, J. WERNER, B. NIESEN, C. BALLIF und B. RUHSTALLER, 2018. Design of perovskite/crystalline-silicon monolithic tandem solar cells. Optics Express. 2018. Bd. 26, Nr. 10, S. A579–A590. DOI 10.21256/zhaw-5507
Altazin, Stéphane, L. Stepanova, J. Werner, B. Niesen, C. Ballif, and B. Ruhstaller. 2018. “Design of Perovskite/Crystalline-Silicon Monolithic Tandem Solar Cells.” Optics Express 26 (10): A579–A90. https://doi.org/10.21256/zhaw-5507.
Altazin, Stéphane, et al. “Design of Perovskite/Crystalline-Silicon Monolithic Tandem Solar Cells.” Optics Express, vol. 26, no. 10, 2018, pp. A579–90, https://doi.org/10.21256/zhaw-5507.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.