Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://doi.org/10.21256/zhaw-5507
Titel: Design of perovskite/crystalline-silicon monolithic tandem solar cells
Autor/-in: Altazin, S.
Stepanova, L.
Werner, J.
Niesen, B.
Ballif, C.
Ruhstaller, B.
Erschienen in: Optics express
Band(Heft): 26
Heft: 10
Seiten: A579
Seiten bis: A590
Verlag / Hrsg. Institution: Optical Society of America
Erscheinungsdatum: 2018
Lizenz (gemäss Verlagsvertrag): CC BY 4.0: Namensnennung 4.0 International
Art der Begutachtung: Peer review (Publikation)
Sprache: Englisch
Fachgebiet (DDC): 621.3: Elektrotechnik und Elektronik
Zusammenfassung: We present an optical model implemented in the commercial software SETFOS 4.6 for simulating perovskite/silicon monolithic tandem solar cells that exploit light scattering structures. In a first step we validate the model with experimental data of tandem solar cells that either use front- or rear-side textures and extract the internal quantum efficiency of the methyl-ammonium lead iodide (MALI) perovskite sub-cell. In a next step, the software is used to investigate the potential of different device architectures featuring a monolithic integration between the perovskite and silicon sub-cells and exploiting rear- as well as front-side textures for improved light harvesting. We find that, considering the available contact materials, the p-i-n solar cell architecture is the most promising with respect to achievable photocurrent for both flat and textured wafers. Finally, cesium-formamidinium-based perovskite materials with several bandgaps were synthetized, optically characterized and their potential in a tandem device was quantified by simulations. For the simulated layer stack and among the tested materials with bandgaps of 1.7 and 1.6 eV, the one with 1.6 eV bandgap was found to be the most promising, with a potential of reaching a power conversion efficiency of 31%. In order to achieve higher efficiencies using higher band-gap materials, parasitic absorptance in the blue spectral range should be further reduced.
Departement: School of Engineering
Organisationseinheit: Institute of Computational Physics (ICP)
Publikationstyp: Beitrag in wissenschaftlicher Zeitschrift
DOI: 10.21256/zhaw-5507
10.1364/OE.26.00A579
ISSN: 1094-4087
URI: https://digitalcollection.zhaw.ch/handle/11475/16127
Enthalten in den Sammlungen:Publikationen School of Engineering



Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.