Publikationstyp: Beitrag in wissenschaftlicher Zeitschrift
Art der Begutachtung: Peer review (Publikation)
Titel: Fuzzy classification with restricted Boltzman machines and echo-state networks for predicting potential railway door system failures
Autor/-in: Fink, Olga
Zio, Enrico
Weidmann, Ulrich
DOI: 10.1109/TR.2015.2424213
Erschienen in: IEEE Transactions on Reliability
Band(Heft): 64
Heft: 3
Seite(n): 861
Seiten bis: 868
Erscheinungsdatum: 2015
Verlag / Hrsg. Institution: IEEE
ISSN: 0018-9529
1558-1721
Sprache: Englisch
Fachgebiet (DDC): 004: Informatik
620: Ingenieurwesen
Zusammenfassung: In this paper, a fuzzy classification approach applying a combination of Echo-State Networks (ESNs) and a Restricted Boltzmann Machine (RBM) is proposed for predicting potential railway rolling stock system failures using discrete-event diagnostic data. The approach is demonstrated on a case study of a railway door system with real data. Fuzzy classification enables the use of linguistic variables for the definition of the time intervals in which the failures are predicted to occur. It provides a more intuitive way to handle the predictions by the users, and increases the acceptance of the proposed approach. The research results confirm the suitability of the proposed combination of algorithms for use in predicting railway rolling stock system failures. The proposed combination of algorithms shows good performance in terms of prediction accuracy on the railway door system case study.
URI: https://digitalcollection.zhaw.ch/handle/11475/13905
Volltext Version: Publizierte Version
Lizenz (gemäss Verlagsvertrag): Lizenz gemäss Verlagsvertrag
Departement: School of Engineering
Organisationseinheit: Institut für Datenanalyse und Prozessdesign (IDP)
Enthalten in den Sammlungen:Publikationen School of Engineering

Dateien zu dieser Ressource:
Es gibt keine Dateien zu dieser Ressource.
Zur Langanzeige


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.