Full metadata record
DC FieldValueLanguage
dc.contributor.authorRighi, Marcello-
dc.date.accessioned2018-12-05T15:43:04Z-
dc.date.available2018-12-05T15:43:04Z-
dc.date.issued2013-
dc.identifier.isbn978-0-7354-1116-6de_CH
dc.identifier.isbn978-0-7354-1117-3de_CH
dc.identifier.issn0094-243Xde_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/13609-
dc.description.abstractNumerical schemes derived from gas-kinetic theory can be applied to simulations in the hydrodynamics limit, in laminar and also turbulent regimes. In the latter case, the underlying Boltzmann equation describes a distribution of eddies, in line with the concept of eddy viscosity developed by Lord Kelvin and Osborne Reynolds at the end of the nineteenth century. These schemes are physically more consistent than schemes derived from the Navier-Stokes equations, which invariably assume infinite collisions between gas particles (or interactions between eddies) in the calculation of advective fluxes. In fact, in continuum regime too, the local Knudsen number can exceed the value 0.001 in shock layers, where gas-kinetic schemes outperform Navier-Stokes schemes, as is well known. Simulation of turbulent flows benefit from the application of gas-kinetic schemes, as the turbulent Knudsen number (the ratio between the eddies’ mean free path and the mean flow scale) can locally reach values well in excess of 0.001, not only in shock layers. A further advantage of gas-kinetic schemes is that the fluxes are accurate to ? 2, for instance in the scheme developed by Xu in 2001 for the finite-volume discretization. In laminar flow, this provides a better resolution of shocks and vortexes, whereas in turbulent flows, high-order fluxes allow for a better resolution of secondary flows in a manner comparable to higher-order turbulence models for the Navier-Stokes schemes. This study has investigated a few cases of shock – boundary layer interaction comparing a gas-kinetic scheme and a Navier-Stokes one, both with a standard k - ? turbulence model. Whereas the results obtained from the Navier-Stokes scheme are affected by the limitations of eddy viscosity two-equation models, the gas-kinetic scheme has performed much better without making any further assumption on the turbulent structures.de_CH
dc.language.isoende_CH
dc.publisherAmerican Institute of Physicsde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectCompressible flowde_CH
dc.subjectRarefied gasde_CH
dc.subjectGas-kinetic schemede_CH
dc.subjectTurbulence modellingde_CH
dc.subject.ddc530: Physikde_CH
dc.titleA gas-kinetic scheme for the simulation of turbulent flowsde_CH
dc.typeKonferenz: Paperde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitut für Mechanische Systeme (IMES)de_CH
zhaw.conference.details28th International Symposium on Rarefied Gas Dynamics, Zaragoza, Spain, 9-13 July 2012de_CH
zhaw.funding.euNode_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end488de_CH
zhaw.pages.start481de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.publication.reviewNot specifiedde_CH
zhaw.title.proceedings28th International Symposium on Rarefied Gas Dynamics 2012de_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.
Show simple item record
Righi, M. (2013). A gas-kinetic scheme for the simulation of turbulent flows [Conference paper]. 28th International Symposium on Rarefied Gas Dynamics 2012, 481–488.
Righi, M. (2013) ‘A gas-kinetic scheme for the simulation of turbulent flows’, in 28th International Symposium on Rarefied Gas Dynamics 2012. American Institute of Physics, pp. 481–488.
M. Righi, “A gas-kinetic scheme for the simulation of turbulent flows,” in 28th International Symposium on Rarefied Gas Dynamics 2012, 2013, pp. 481–488.
RIGHI, Marcello, 2013. A gas-kinetic scheme for the simulation of turbulent flows. In: 28th International Symposium on Rarefied Gas Dynamics 2012. Conference paper. American Institute of Physics. 2013. S. 481–488. ISBN 978-0-7354-1116-6
Righi, Marcello. 2013. “A Gas-Kinetic Scheme for the Simulation of Turbulent Flows.” Conference paper. In 28th International Symposium on Rarefied Gas Dynamics 2012, 481–88. American Institute of Physics.
Righi, Marcello. “A Gas-Kinetic Scheme for the Simulation of Turbulent Flows.” 28th International Symposium on Rarefied Gas Dynamics 2012, American Institute of Physics, 2013, pp. 481–88.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.