Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-4912
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBaumgartner, Daniel-
dc.contributor.authorTomas, Daniel-
dc.contributor.authorGossweiler, Lukas-
dc.contributor.authorSiegl, Walter-
dc.contributor.authorOsterhoff, Georg-
dc.contributor.authorHeinlein, Bernd-
dc.date.accessioned2018-11-30T10:03:56Z-
dc.date.available2018-11-30T10:03:56Z-
dc.date.issued2013-03-
dc.identifier.issn0140-0118de_CH
dc.identifier.issn1741-0444de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/13407-
dc.descriptionErworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch)de_CH
dc.description.abstractA preclinical analysis of novel implants used in shoulder surgery requires biomechanical testing conditions close to physiology. Existing shoulder experiments may only partially apply multiple cycles to simulate postoperative, repetitive loading tasks. The aim of the present study was therefore the development of an experimental shoulder simulator with rotating scapula able to perform multiple humeral movement cycles by simulating individual muscles attached to the rotator cuff. A free-hanging, metallic humerus pivoted in a polyethylene glenoid is activated by tension forces of linear electroactuators to simulate muscles of the deltoideus (DELT), supraspinatus (SSP), infraspinatus/teres minor and subscapularis. The abductors DELT and SSP apply forces with a ratio of 3:1 up to an abduction angle of 85°. The rotating scapular part driven by a rotative electro actuator provides one-third to the overall arm abduction. Resulting joint forces and moments are measured by a 6-axis load cell. A linear increase in the DELT and SSP motors is shown up to a maximum of 150 and 50 N for the DELT and SSP, respectively. The force vector in the glenoid resulted in 253 N at the maximum abduction. The present investigation shows the contribution of individual muscle forces attached to the moving humerus to perform active abduction in order to reproducibly test shoulder implants.de_CH
dc.language.isoende_CH
dc.publisherSpringerde_CH
dc.relation.ispartofMedical & Biological Engineering & Computingde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectBiomechanical phenomenade_CH
dc.subjectEquipment designde_CH
dc.subjectHumerusde_CH
dc.subjectPolyethylenede_CH
dc.subjectArticular range of motionde_CH
dc.subjectRotator cuffde_CH
dc.subjectScapulade_CH
dc.subjectShoulderde_CH
dc.subjectShoulder jointde_CH
dc.subject.ddc610: Medizin und Gesundheitde_CH
dc.titleTowards the development of a novel experimental shoulder simulator with rotating scapula and individually controlled muscle forces simulating the rotator cuffde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitut für Mechanische Systeme (IMES)de_CH
dc.identifier.doi10.21256/zhaw-4912-
dc.identifier.doi10.1007/s11517-013-1120-zde_CH
dc.identifier.pmid24170552de_CH
zhaw.funding.euNode_CH
zhaw.issue3de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end299de_CH
zhaw.pages.start293de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume52de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2014_Baumgartner_Towards_the_development_of_a_novel_experimental_shoulder_simulator.pdf762.24 kBAdobe PDFThumbnail
View/Open
Show simple item record
Baumgartner, D., Tomas, D., Gossweiler, L., Siegl, W., Osterhoff, G., & Heinlein, B. (2013). Towards the development of a novel experimental shoulder simulator with rotating scapula and individually controlled muscle forces simulating the rotator cuff. Medical & Biological Engineering & Computing, 52(3), 293–299. https://doi.org/10.21256/zhaw-4912
Baumgartner, D. et al. (2013) ‘Towards the development of a novel experimental shoulder simulator with rotating scapula and individually controlled muscle forces simulating the rotator cuff’, Medical & Biological Engineering & Computing, 52(3), pp. 293–299. Available at: https://doi.org/10.21256/zhaw-4912.
D. Baumgartner, D. Tomas, L. Gossweiler, W. Siegl, G. Osterhoff, and B. Heinlein, “Towards the development of a novel experimental shoulder simulator with rotating scapula and individually controlled muscle forces simulating the rotator cuff,” Medical & Biological Engineering & Computing, vol. 52, no. 3, pp. 293–299, Mar. 2013, doi: 10.21256/zhaw-4912.
BAUMGARTNER, Daniel, Daniel TOMAS, Lukas GOSSWEILER, Walter SIEGL, Georg OSTERHOFF und Bernd HEINLEIN, 2013. Towards the development of a novel experimental shoulder simulator with rotating scapula and individually controlled muscle forces simulating the rotator cuff. Medical & Biological Engineering & Computing. März 2013. Bd. 52, Nr. 3, S. 293–299. DOI 10.21256/zhaw-4912
Baumgartner, Daniel, Daniel Tomas, Lukas Gossweiler, Walter Siegl, Georg Osterhoff, and Bernd Heinlein. 2013. “Towards the Development of a Novel Experimental Shoulder Simulator with Rotating Scapula and Individually Controlled Muscle Forces Simulating the Rotator Cuff.” Medical & Biological Engineering & Computing 52 (3): 293–99. https://doi.org/10.21256/zhaw-4912.
Baumgartner, Daniel, et al. “Towards the Development of a Novel Experimental Shoulder Simulator with Rotating Scapula and Individually Controlled Muscle Forces Simulating the Rotator Cuff.” Medical & Biological Engineering & Computing, vol. 52, no. 3, Mar. 2013, pp. 293–99, https://doi.org/10.21256/zhaw-4912.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.