Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-4907
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRighi, Marcello-
dc.date.accessioned2018-11-30T09:38:55Z-
dc.date.available2018-11-30T09:38:55Z-
dc.date.issued2014-07-
dc.identifier.issn1815-2406de_CH
dc.identifier.issn1991-7120de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/13398-
dc.descriptionPublished online: 16 April 2014, erworben im Rahmen der Schweizer Nationallizenzen (www.nationallizenzen.ch)de_CH
dc.description.abstractThe implementation of a turbulent gas-kinetic scheme into a finite-volume RANS solver is put forward, with two turbulent quantities, kinetic energy and dissipation, supplied by an allied turbulence model. This paper shows a number of numerical simulations of flow cases including an interaction between a shock wave and a turbulent boundary layer, where the shock-turbulent boundary layer is captured in a much more convincing way than it normally is by conventional schemes based on the Navier-Stokes equations. In the gas-kinetic scheme, the modeling of turbulence is part of the numerical scheme, which adjusts as a function of the ratio of resolved to unresolved scales of motion. In so doing, the turbulent stress tensor is not constrained into a linear relation with the strain rate. Instead it is modeled on the basis of the analogy between particles and eddies, without any assumptions on the type of turbulence or flow class. Conventional schemes lack multiscale mechanisms: the ratio of unresolved to resolved scales – very much like a degree of rarefaction – is not taken into account even if it may grow to non-negligible values in flow regions such as shocklayers. It is precisely in these flow regions, that the turbulent gas-kinetic scheme seems to provide more accurate predictions than conventional schemes.de_CH
dc.language.isoende_CH
dc.publisherGlobal Science Pressde_CH
dc.relation.ispartofCommunications in Computational Physicsde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectPhysics - fluid dynamicsde_CH
dc.subject.ddc530: Physikde_CH
dc.titleA modified gas-kinetic scheme for turbulent flowde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitut für Mechanische Systeme (IMES)de_CH
dc.identifier.doi10.21256/zhaw-4907-
dc.identifier.doi10.4208/cicp.140813.021213ade_CH
zhaw.funding.euNode_CH
zhaw.issue1de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end263de_CH
zhaw.pages.start239de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume16de_CH
zhaw.embargo.end2019-07-01de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2014_Righi_A_modified_gaskinetic_scheme_for_turbulent_flow.pdf4.06 MBAdobe PDFThumbnail
View/Open
Show simple item record
Righi, M. (2014). A modified gas-kinetic scheme for turbulent flow. Communications in Computational Physics, 16(1), 239–263. https://doi.org/10.21256/zhaw-4907
Righi, M. (2014) ‘A modified gas-kinetic scheme for turbulent flow’, Communications in Computational Physics, 16(1), pp. 239–263. Available at: https://doi.org/10.21256/zhaw-4907.
M. Righi, “A modified gas-kinetic scheme for turbulent flow,” Communications in Computational Physics, vol. 16, no. 1, pp. 239–263, Jul. 2014, doi: 10.21256/zhaw-4907.
RIGHI, Marcello, 2014. A modified gas-kinetic scheme for turbulent flow. Communications in Computational Physics. Juli 2014. Bd. 16, Nr. 1, S. 239–263. DOI 10.21256/zhaw-4907
Righi, Marcello. 2014. “A Modified Gas-Kinetic Scheme for Turbulent Flow.” Communications in Computational Physics 16 (1): 239–63. https://doi.org/10.21256/zhaw-4907.
Righi, Marcello. “A Modified Gas-Kinetic Scheme for Turbulent Flow.” Communications in Computational Physics, vol. 16, no. 1, July 2014, pp. 239–63, https://doi.org/10.21256/zhaw-4907.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.