Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRighi, Marcello-
dc.descriptionPublished online: 16 April 2014, erworben im Rahmen der Schweizer Nationallizenzen (
dc.description.abstractThe implementation of a turbulent gas-kinetic scheme into a finite-volume RANS solver is put forward, with two turbulent quantities, kinetic energy and dissipation, supplied by an allied turbulence model. This paper shows a number of numerical simulations of flow cases including an interaction between a shock wave and a turbulent boundary layer, where the shock-turbulent boundary layer is captured in a much more convincing way than it normally is by conventional schemes based on the Navier-Stokes equations. In the gas-kinetic scheme, the modeling of turbulence is part of the numerical scheme, which adjusts as a function of the ratio of resolved to unresolved scales of motion. In so doing, the turbulent stress tensor is not constrained into a linear relation with the strain rate. Instead it is modeled on the basis of the analogy between particles and eddies, without any assumptions on the type of turbulence or flow class. Conventional schemes lack multiscale mechanisms: the ratio of unresolved to resolved scales – very much like a degree of rarefaction – is not taken into account even if it may grow to non-negligible values in flow regions such as shocklayers. It is precisely in these flow regions, that the turbulent gas-kinetic scheme seems to provide more accurate predictions than conventional schemes.de_CH
dc.publisherGlobal Science Pressde_CH
dc.relation.ispartofCommunications in Computational Physicsde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectPhysics - fluid dynamicsde_CH
dc.subject.ddc530: Physikde_CH
dc.titleA modified gas-kinetic scheme for turbulent flowde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitut für Mechanische Systeme (IMES)de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2014_Righi_A_modified_gaskinetic_scheme_for_turbulent_flow.pdf4.06 MBAdobe PDFThumbnail

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.