Publication type: Conference paper
Type of review: Not specified
Title: Spectral sensitivity analyses of tandem modules using standard flasher and dynamic LED backlight
Authors: Schär, Daniel
Baumgartner, Franz
DOI: 10.4229/28thEUPVSEC2013-4AV.6.53
Proceedings: Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition
Page(s): 3532
Pages to: 3535
Conference details: 28th European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC), Paris, France, 30 September - 4 October 2013
Issue Date: 2013
Publisher / Ed. Institution: WIP
ISBN: 3-936338-33-7
Language: English
Subject (DDC): 
Abstract: As the solar spectra are changing during the day, seasons and weather conditions, the accurate annual energy rating has to be based not only on the nominal power at Standard Test Conditions STC but also on the sensitivity of power versus spectrum. The aim of the work is to measure the spectral sensitivity of tandem modules within the current/voltage scan. A standard industrial flasher was used to measure amorphous / microcrystalline (a- Si/uc-Si) tandem modules. This system was equipped with a special developed dynamic LED backlight at ZHAW. Test samples were analyzed using different shapes of dynamic backlight superposing the standard flasher STC spectra. The change of the LED backlight in the millisecond regime according to triangular, rectangular and sinusoidal shapes were applied. The analyzes were manly performed on a-Si/uc-Si tandem modules (1.1m x 1.3m). A triangle backlight characteristic was applied, increasing the IR LED light from 0% to 7% of ISC of the crystalline Silicon reference cell. Immediately after that period of 1.25ms, the IR LEDs are turned off and the blue LED decay from again 7% of ISC to 0% remaining on top of the STC spectra. This analysis shows significantly different spectral sensitivity at this specific time of changing from IR to blue. On the one hand the current of the module at maximum power point (MPP) changes proportionally with the IR intensity increase. On the other hand the tandem module’s short circuit current shows no significant changes at the same IR intensity variation. The same method of analyzes are applied to a-Si/uc-Si tandem modules operating during 4 months and 34 months respectively, under real outdoor conditions. It is evident that this outdoor degraded modules show only marginal changes of the module current at MPP for the same increase of this dynamic IR LED backlight. Thus, a method together with the setup is presented and confirmed to measure the state of degradation of this kind of tandem module during the flasher period of a few milliseconds. The use of the presented dynamic LED backlight has the potential, in the industrial module production process, to improve the output of a standard STC flash during several milliseconds by providing information about the current matching of top and bottom tandem cells on a module scale.
Fulltext version: Published version
License (according to publishing contract): Licence according to publishing contract
Departement: School of Engineering
Organisational Unit: Institute of Energy Systems and Fluid Engineering (IEFE)
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.