Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://doi.org/10.21256/zhaw-1452
Publikationstyp: Beitrag in wissenschaftlicher Zeitschrift
Art der Begutachtung: Peer review (Publikation)
Titel: Merging flexibility with superinsulation : machinable, nanofibrous pullulan-silica aerogel composites
Autor/-in: Zhao, Shanyu
Emery, Olivier
Wohlhauser, Anja
Koebel, Matthias M.
Adlhart, Christian
Malfait, Wim J.
DOI: 10.21256/zhaw-1452
10.1016/j.matdes.2018.09.010
Erschienen in: Materials & Design
Band(Heft): 160
Seite(n): 294
Seiten bis: 302
Erscheinungsdatum: 2018
Verlag / Hrsg. Institution: Elsevier
ISSN: 0264-1275
0261-3069
1873-4197
Sprache: Englisch
Schlagwörter: Nanocomposite; Polysaccharide; Nanofibers; Hybrid aerogels; Densification
Fachgebiet (DDC): 540: Chemie
620: Ingenieurwesen
Zusammenfassung: Freeze-dried nanofibrous scaffolds are flexible, but typically have high thermal conductivities. Conversely, silica aerogel has an ultra-low thermal conductivity, but is brittle. Here, the impregnation of pullulan/PVA nanofiber scaffolds with hydrophobic silica aerogel decreased the thermal conductivity from 31.4 to 17.7 mW/(m·K). The compatibility between the silylated nanofibers and the silica aerogel promotes the overgrowth of silica particles onto the fiber surfaces and the fiber incorporation. The composites display improved compressive and tensile properties compared to the neat pullulan scaffold and silica aerogel. The composite's E-modulus is 234 kPa compared to 4 kPa for the pullulan scaffold and 102 kPa for the silica aerogel. The composite's tensile strength is five times higher than that of the silica aerogel. Because of its reduced brittleness, the pullulan-silica aerogel composites can be shaped using a sharp blade. The composites can sustain uniaxial compression up to 80% strain, but the decompressed composites display two times higher densities because the strain is partially irreversible. This densification reduces thermal conductivity to 16.3 mW/(m·K) and increases final compressive strength by a factor of seven. Both the as prepared and densified composites demonstrate unique material properties in terms of thermal conductivity, mechanical strength and machinability.
URI: https://digitalcollection.zhaw.ch/handle/11475/10841
Volltext Version: Publizierte Version
Lizenz (gemäss Verlagsvertrag): CC BY-NC-ND 4.0: Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International
Gesperrt bis: 2020-12-15
Departement: Life Sciences und Facility Management
Organisationseinheit: Institut für Chemie und Biotechnologie (ICBT)
Enthalten in den Sammlungen:Publikationen Life Sciences und Facility Management

Zur Langanzeige
Zhao, S., Emery, O., Wohlhauser, A., Koebel, M. M., Adlhart, C., & Malfait, W. J. (2018). Merging flexibility with superinsulation : machinable, nanofibrous pullulan-silica aerogel composites. Materials & Design, 160, 294–302. https://doi.org/10.21256/zhaw-1452
Zhao, S. et al. (2018) ‘Merging flexibility with superinsulation : machinable, nanofibrous pullulan-silica aerogel composites’, Materials & Design, 160, pp. 294–302. Available at: https://doi.org/10.21256/zhaw-1452.
S. Zhao, O. Emery, A. Wohlhauser, M. M. Koebel, C. Adlhart, and W. J. Malfait, “Merging flexibility with superinsulation : machinable, nanofibrous pullulan-silica aerogel composites,” Materials & Design, vol. 160, pp. 294–302, 2018, doi: 10.21256/zhaw-1452.
ZHAO, Shanyu, Olivier EMERY, Anja WOHLHAUSER, Matthias M. KOEBEL, Christian ADLHART und Wim J. MALFAIT, 2018. Merging flexibility with superinsulation : machinable, nanofibrous pullulan-silica aerogel composites. Materials & Design. 2018. Bd. 160, S. 294–302. DOI 10.21256/zhaw-1452
Zhao, Shanyu, Olivier Emery, Anja Wohlhauser, Matthias M. Koebel, Christian Adlhart, and Wim J. Malfait. 2018. “Merging Flexibility with Superinsulation : Machinable, Nanofibrous Pullulan-Silica Aerogel Composites.” Materials & Design 160: 294–302. https://doi.org/10.21256/zhaw-1452.
Zhao, Shanyu, et al. “Merging Flexibility with Superinsulation : Machinable, Nanofibrous Pullulan-Silica Aerogel Composites.” Materials & Design, vol. 160, 2018, pp. 294–302, https://doi.org/10.21256/zhaw-1452.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.