Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-27007
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFumey, Benjamin-
dc.contributor.authorWeber, Robert-
dc.contributor.authorBaldini, Luca-
dc.date.accessioned2023-02-16T14:39:50Z-
dc.date.available2023-02-16T14:39:50Z-
dc.date.issued2023-04-01-
dc.identifier.issn0306-2619de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/27007-
dc.description.abstractSorption storage is a potential game changer for heat storage in buildings, providing high volumetric energy storage density and no loss over storage time. Application specific temperatures and material specific thermo-dynamic properties are recognized as key for potential performance evaluation. Nevertheless, in system operation, finite heat and mass transfer kinetics detract from the theoretical maximum performance. In this study, it is found that a nonlinear relationship between temperature gain and heat release of the sorbent, afflicts an unavoidable restriction to the performance potential. Heat transport increases as temperature gain decreases, bringing about a temperature induced heat transfer stagnation to a heat transport fluid with linear temperature to heat gain correlation. In this paper, we present the background for performance analysis with emphasis on this nonlinear relationship. We propose a method for performance mapping, including the sorbent equilibrium line (the state where the sorbent is in temperature, concentration and vapor pressure equilibrium) and the unavoidable deviation from this line due to the afore stated non-linearity. As an example of this proposed mapping, we visualize results from an absorption process with liquid aqueous sodium hydroxide and water. Due to the nonlinear temperature rise in heat release, we conclude that it is important to operate a sorption heat storage system in a way that only the minimum required temperature rise is achieved. By doing so, the heat transport fluid capacity is increased in respect to the sorbent capacity, augmenting heat transfer and improving the energy density.de_CH
dc.language.isoende_CH
dc.publisherElsevierde_CH
dc.relation.ispartofApplied Energyde_CH
dc.rightshttp://creativecommons.org/licenses/by/4.0/de_CH
dc.subjectLiquid sorption heat storagede_CH
dc.subjectSodium hydroxidede_CH
dc.subjectPerformance evaluation and limitationde_CH
dc.subjectNonlinear temperature to heat correlationde_CH
dc.subjectLab scale demonstratorde_CH
dc.subjectPerformance mappingde_CH
dc.subject.ddc620: Ingenieurwesende_CH
dc.titleHeat transfer constraints and performance mapping of a closed liquid sorption heat storage processde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementArchitektur, Gestaltung und Bauingenieurwesende_CH
zhaw.organisationalunitInstitut Bautechnologie und Prozesse (IBP)de_CH
dc.identifier.doi10.1016/j.apenergy.2023.120755de_CH
dc.identifier.doi10.21256/zhaw-27007-
zhaw.funding.euNode_CH
zhaw.issue120755de_CH
zhaw.originated.zhawYesde_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume335de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Appears in collections:Publikationen Architektur, Gestaltung und Bauingenieurwesen

Files in This Item:
File Description SizeFormat 
2023_Fumey-etal_Closed-liquid-sorption-heat-storage-process.pdf1.69 MBAdobe PDFThumbnail
View/Open
Show simple item record
Fumey, B., Weber, R., & Baldini, L. (2023). Heat transfer constraints and performance mapping of a closed liquid sorption heat storage process. Applied Energy, 335(120755). https://doi.org/10.1016/j.apenergy.2023.120755
Fumey, B., Weber, R. and Baldini, L. (2023) ‘Heat transfer constraints and performance mapping of a closed liquid sorption heat storage process’, Applied Energy, 335(120755). Available at: https://doi.org/10.1016/j.apenergy.2023.120755.
B. Fumey, R. Weber, and L. Baldini, “Heat transfer constraints and performance mapping of a closed liquid sorption heat storage process,” Applied Energy, vol. 335, no. 120755, Apr. 2023, doi: 10.1016/j.apenergy.2023.120755.
FUMEY, Benjamin, Robert WEBER und Luca BALDINI, 2023. Heat transfer constraints and performance mapping of a closed liquid sorption heat storage process. Applied Energy. 1 April 2023. Bd. 335, Nr. 120755. DOI 10.1016/j.apenergy.2023.120755
Fumey, Benjamin, Robert Weber, and Luca Baldini. 2023. “Heat Transfer Constraints and Performance Mapping of a Closed Liquid Sorption Heat Storage Process.” Applied Energy 335 (120755). https://doi.org/10.1016/j.apenergy.2023.120755.
Fumey, Benjamin, et al. “Heat Transfer Constraints and Performance Mapping of a Closed Liquid Sorption Heat Storage Process.” Applied Energy, vol. 335, no. 120755, Apr. 2023, https://doi.org/10.1016/j.apenergy.2023.120755.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.