Full metadata record
DC FieldValueLanguage
dc.contributor.authorAmrein, Mario-
dc.contributor.authorWihler, Thomas P.-
dc.date.accessioned2019-08-14T12:47:42Z-
dc.date.available2019-08-14T12:47:42Z-
dc.date.issued2016-09-
dc.identifier.issn1007-5704de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/17926-
dc.description.abstractThe traditional Newton method for solving nonlinear operator equations in Banach spaces is discussed within the context of the continuous Newton method. This setting makes it possible to interpret the Newton method as a discrete dynamical system and thereby to cast it in the framework of an adaptive step size control procedure. In so doing, our goal is to reduce the chaotic behavior of the original method without losing its quadratic convergence property close to the roots. The performance of the modified scheme is illustrated with various examples from algebraic and differential equations.de_CH
dc.language.isoende_CH
dc.publisherElsevierde_CH
dc.relation.ispartofCommunications in Nonlinear Science and Numerical Simulationde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectNewton–Raphson methodde_CH
dc.subjectContinuous Newton–Raphson methodde_CH
dc.subjectAdaptive step size controlde_CH
dc.subjectNonlinear differential equationde_CH
dc.subject.ddc510: Mathematikde_CH
dc.titleAn adaptive Newton-method based on a dynamical systems approachde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Management and Lawde_CH
zhaw.organisationalunitInstitut für Risk & Insurance (IRI)de_CH
dc.identifier.doi10.1016/j.cnsns.2014.02.010de_CH
zhaw.funding.euNode_CH
zhaw.issue9de_CH
zhaw.originated.zhawNode_CH
zhaw.pages.end2973de_CH
zhaw.pages.start2958de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume19de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.author.additionalNode_CH
Appears in collections:Publikationen School of Management and Law

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.