Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-3364
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDi Natali, Christian-
dc.contributor.authorPoliero, Tommaso-
dc.contributor.authorSposito, Matteo-
dc.contributor.authorGraf, Eveline-
dc.contributor.authorBauer, Christoph-
dc.contributor.authorPauli, Carole-
dc.contributor.authorBottenberg, Eliza-
dc.contributor.authorDe Eyto, Adam-
dc.contributor.authorO’Sullivan, Leonard-
dc.contributor.authorHidalgo, Andrés F.-
dc.contributor.authorScherly, Daniel-
dc.contributor.authorStadler, Konrad S.-
dc.contributor.authorCaldwell, Darwin G.-
dc.contributor.authorOrtiz, Jesús-
dc.date.accessioned2019-02-26T17:33:43Z-
dc.date.available2019-02-26T17:33:43Z-
dc.date.issued2019-02-26-
dc.identifier.issn0263-5747de_CH
dc.identifier.issn1469-8668de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/15681-
dc.description.abstractWearable devices are fast evolving to address mobility and autonomy needs of elderly people who would benefit from physical assistance. Recent developments in soft robotics provide important opportunities to develop soft exoskeletons (also called exosuits) to enable both physical assistance and improved usability and acceptance for users. The XoSoft EU project has developed a modular soft lower limb exoskeleton to assist people with low mobility impairments. In this paper, we present the design of a soft modular lower limb exoskeleton to improve person’s mobility, contributing to independence and enhancing quality of life. The novelty of this work is the integration of quasi-passive elements in a soft exoskeleton. The exoskeleton provides mechanical assistance for subjects with low mobility impairments reducing energy requirements between 10% and 20%. Investigation of different control strategies based on gait segmentation and actuation elements is presented. A first hip–knee unilateral prototype is described, developed, and its performance assessed on a post-stroke patient for straight walking. The study presents an analysis of the human–exoskeleton energy patterns by way of the task-based biological power generation. The resultant assistance, in terms of power, was 10.9% ± 2.2% for hip actuation and 9.3% ± 3.5% for knee actuation. The control strategy improved the gait and postural patterns by increasing joint angles and foot clearance at specific phases of the walking cycle.de_CH
dc.language.isoende_CH
dc.publisherCambridge University Pressde_CH
dc.relation.ispartofRoboticade_CH
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/de_CH
dc.subject.ddc620: Ingenieurwesende_CH
dc.titleDesign and evaluation of a soft assistive lower limb exoskeletonde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementGesundheitde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitut für Mechatronische Systeme (IMS)de_CH
zhaw.organisationalunitInstitut für Physiotherapie (IPT)de_CH
dc.identifier.doi10.21256/zhaw-3364-
dc.identifier.doi10.1017/S0263574719000067de_CH
zhaw.funding.euinfo:eu-repo/grantAgreement/EC/H2020/688175//Soft modular biomimetic exoskeleton to assist people with mobility impairments/de_CH
zhaw.originated.zhawYesde_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.webfeedDigitale Transformationde_CH
Appears in Collections:Publikationen Gesundheit

Files in This Item:
File Description SizeFormat 
design_and_evaluation_of_a_soft_assistive_lower_limb_exoskeleton.pdf1.93 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.