Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-3454
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAmrein, Mario-
dc.contributor.authorWihler, Thomas P.-
dc.date.accessioned2018-11-26T15:37:42Z-
dc.date.available2018-11-26T15:37:42Z-
dc.date.issued2016-
dc.identifier.issn0272-4979de_CH
dc.identifier.issn1464-3642de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/13223-
dc.descriptionErworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch)de_CH
dc.description.abstractIn this article, we develop an adaptive procedure for the numerical solution of semilinear parabolic problems with possible singular perturbations. Our approach combines a linearization technique using Newton’s method with an adaptive discretization – which is based on a spatial finite element method and the backward Euler time-stepping scheme – of the resulting sequence of linear problems. Upon deriving a robust a posteriori error analysis, we design a fully adaptive Newton-Galerkin time-stepping algorithm. Numerical experiments underline the robustness and reliability of the proposed approach for various examples.de_CH
dc.language.isoende_CH
dc.publisherOxford University Pressde_CH
dc.relation.ispartofThe IMA Journal of Numerical Analysisde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subject.ddc510: Mathematikde_CH
dc.titleAn adaptive space-time Newton–Galerkin approach for semilinear singularly perturbed parabolic evolution equationsde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Management and Lawde_CH
zhaw.organisationalunitInstitut für Risk & Insurance (IRI)de_CH
dc.identifier.doi10.21256/zhaw-3454-
dc.identifier.doi10.1093/imanum/drw049de_CH
zhaw.funding.euNode_CH
zhaw.issue4de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end2019de_CH
zhaw.pages.start2004de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume37de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
Appears in collections:Publikationen School of Management and Law

Files in This Item:
File Description SizeFormat 
Time-Adaptive_Paper_.pdf414.9 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.