Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://doi.org/10.21256/zhaw-18965
Publikationstyp: Beitrag in wissenschaftlicher Zeitschrift
Art der Begutachtung: Peer review (Publikation)
Titel: Consistent device simulation model describing perovskite solar cells in steady-state, transient, and frequency domain
Autor/-in: Neukom, Martin T.
Schiller, Andreas
Züfle, Simon
Knapp, Evelyne
Ávila, Jorge
Pérez-del-Rey, Daniel
Dreessen, Chris
Zanoni, Kassio P.S.
Sessolo, Michele
Bolink, Henk J.
Ruhstaller, Beat
et. al: No
DOI: 10.1021/acsami.9b04991
10.21256/zhaw-18965
Erschienen in: ACS Applied Materials & Interfaces
Band(Heft): 11
Heft: 26
Seite(n): 23320
Seiten bis: 23328
Erscheinungsdatum: 10-Jun-2019
Verlag / Hrsg. Institution: American Chemical Society
ISSN: 1944-8244
1944-8252
Sprache: Englisch
Schlagwörter: IMPS; Drift-diffusion modeling; Hysteresis; Impedance spectroscopy; Mobile ions; Perovskite solar cells; Transient photo-current; Traps
Fachgebiet (DDC): 621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnik
Zusammenfassung: A variety of experiments on vacuum-deposited methylammonium lead iodide perovskite solar cells are presented, including JV curves with different scan rates, light intensity-dependent open-circuit voltage, impedance spectra, intensity-modulated photocurrent spectra, transient photocurrents, and transient voltage step responses. All these experimental data sets are successfully reproduced by a charge drift-diffusion simulation model incorporating mobile ions and charge traps using a single set of parameters. While previous modeling studies focused on a single experimental technique, we combine steady-state, transient, and frequency-domain simulations and measurements. Our study is an important step toward quantitative simulation of perovskite solar cells, leading to a deeper understanding of the physical effects in these materials. The analysis of the transient current upon voltage turn-on in the dark reveals that the charge injection properties of the interfaces are triggered by the accumulation of mobile ionic defects. We show that the current rise of voltage step experiments allow for conclusions about the recombination at the interface. Whether one or two mobile ionic species are used in the model has only a minor influence on the observed effects. A delayed current rise observed upon reversing the bias from +3 to -3 V in the dark cannot be reproduced yet by our drift-diffusion model. We speculate that a reversible chemical reaction of mobile ions with the contact material may be the cause of this effect, thus requiring a future model extension. A parameter variation is performed in order to understand the performance-limiting factors of the device under investigation.
Weitere Angaben: ​This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials & Interfaces, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acsami.9b04991
URI: https://digitalcollection.zhaw.ch/handle/11475/18965
Volltext Version: Akzeptierte Version
Lizenz (gemäss Verlagsvertrag): Lizenz gemäss Verlagsvertrag
Gesperrt bis: 2020-06-11
Departement: School of Engineering
Organisationseinheit: Institute of Computational Physics (ICP)
Publiziert im Rahmen des ZHAW-Projekts: PV2050: Simulation and Characterization
Enthalten in den Sammlungen:Publikationen School of Engineering

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Neukom_ACSApplMaterInt xx,xxx 2019_Supp.pdfSupporting Information1.96 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen
PSC_Sim_proof.pdfRevised Manuscript980.08 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen
Zur Langanzeige
Neukom, M. T., Schiller, A., Züfle, S., Knapp, E., Ávila, J., Pérez-del-Rey, D., Dreessen, C., Zanoni, K. P. S., Sessolo, M., Bolink, H. J., & Ruhstaller, B. (2019). Consistent device simulation model describing perovskite solar cells in steady-state, transient, and frequency domain. ACS Applied Materials & Interfaces, 11(26), 23320–23328. https://doi.org/10.1021/acsami.9b04991
Neukom, M.T. et al. (2019) ‘Consistent device simulation model describing perovskite solar cells in steady-state, transient, and frequency domain’, ACS Applied Materials & Interfaces, 11(26), pp. 23320–23328. Available at: https://doi.org/10.1021/acsami.9b04991.
M. T. Neukom et al., “Consistent device simulation model describing perovskite solar cells in steady-state, transient, and frequency domain,” ACS Applied Materials & Interfaces, vol. 11, no. 26, pp. 23320–23328, Jun. 2019, doi: 10.1021/acsami.9b04991.
NEUKOM, Martin T., Andreas SCHILLER, Simon ZÜFLE, Evelyne KNAPP, Jorge ÁVILA, Daniel PÉREZ-DEL-REY, Chris DREESSEN, Kassio P.S. ZANONI, Michele SESSOLO, Henk J. BOLINK und Beat RUHSTALLER, 2019. Consistent device simulation model describing perovskite solar cells in steady-state, transient, and frequency domain. ACS Applied Materials & Interfaces. 10 Juni 2019. Bd. 11, Nr. 26, S. 23320–23328. DOI 10.1021/acsami.9b04991
Neukom, Martin T., Andreas Schiller, Simon Züfle, Evelyne Knapp, Jorge Ávila, Daniel Pérez-del-Rey, Chris Dreessen, et al. 2019. “Consistent Device Simulation Model Describing Perovskite Solar Cells in Steady-State, Transient, and Frequency Domain.” ACS Applied Materials & Interfaces 11 (26): 23320–28. https://doi.org/10.1021/acsami.9b04991.
Neukom, Martin T., et al. “Consistent Device Simulation Model Describing Perovskite Solar Cells in Steady-State, Transient, and Frequency Domain.” ACS Applied Materials & Interfaces, vol. 11, no. 26, June 2019, pp. 23320–28, https://doi.org/10.1021/acsami.9b04991.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.