Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://doi.org/10.21256/zhaw-3682
Publikationstyp: Konferenz: Poster
Art der Begutachtung: Peer review (Abstract)
Titel: FSI of viscosity measuring mechanical resonators : theoretical and experimental analysis
Autor/-in: Brunner, Daniel
Häusler, Klaus
Kumar, Sunil
Boiger, Gernot Kurt
Khawaja, Hassan Abbas
Moatamedi, Moji
DOI: 10.21256/zhaw-3682
Tagungsband: Multiphysics 2017
Angaben zur Konferenz: International Conference of Multiphysics, Beijing, China, 14-15 December 2017
Erscheinungsdatum: 14-Dez-2017
Verlag / Hrsg. Institution: International Society of Multiphysics
ISSN: 2409-1669
2409-7527
Sprache: Englisch
Schlagwörter: FSI; Viscosity; Mechanical resonator
Fachgebiet (DDC): 530: Physik
Zusammenfassung: Measuring viscosity online in processes is crucial to maintaining the quality of many chemical and biological processes. The damping induced by the liquid around the resonator is used to determine the viscosity of the liquids. Typical viscosity sensors are probe style and obstruct the piping system, disturbing the flow and creating a potential source of contamination in critical processes. The eventual goal is to design a non-intrusive sensor capable of accurately measuring the viscosity of the liquids without influencing the flow within the pipe. In order to get a deeper insight into the functionality of such a device, a mathematical model has been developed describing the mechanical vibration coupled with the fluid-structure interaction (FSI) models. The shear stresses at the wall have been analysed using the computational fluid dynamics tool OpenFOAM and have been integrated into the derived model. For validation, the model has been tested against the samples. The model is capable of accurately predicting the response of the sensor and can be used as an optimization and design tool.
URI: https://digitalcollection.zhaw.ch/handle/11475/6329
https://static1.squarespace.com/static/5c9f89c101232c1d41297d67/t/5d7942615c8d7e4106ee10d7/1568227954088/MULTIPHYSICS+2017+-+Abstracts.pdf
Volltext Version: Publizierte Version
Lizenz (gemäss Verlagsvertrag): Lizenz gemäss Verlagsvertrag
Departement: School of Engineering
Organisationseinheit: Institute of Computational Physics (ICP)
Enthalten in den Sammlungen:Publikationen School of Engineering

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Poster_Rheonics_V3_A1.pdf458.95 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen
Zur Langanzeige
Brunner, D., Häusler, K., Kumar, S., Boiger, G. K., Khawaja, H. A., & Moatamedi, M. (2017, December 14). FSI of viscosity measuring mechanical resonators : theoretical and experimental analysis. Multiphysics 2017. https://doi.org/10.21256/zhaw-3682
Brunner, D. et al. (2017) ‘FSI of viscosity measuring mechanical resonators : theoretical and experimental analysis’, in Multiphysics 2017. International Society of Multiphysics. Available at: https://doi.org/10.21256/zhaw-3682.
D. Brunner, K. Häusler, S. Kumar, G. K. Boiger, H. A. Khawaja, and M. Moatamedi, “FSI of viscosity measuring mechanical resonators : theoretical and experimental analysis,” in Multiphysics 2017, Dec. 2017. doi: 10.21256/zhaw-3682.
BRUNNER, Daniel, Klaus HÄUSLER, Sunil KUMAR, Gernot Kurt BOIGER, Hassan Abbas KHAWAJA und Moji MOATAMEDI, 2017. FSI of viscosity measuring mechanical resonators : theoretical and experimental analysis. In: Multiphysics 2017 [online]. Conference poster. International Society of Multiphysics. 14 Dezember 2017. Verfügbar unter: https://static1.squarespace.com/static/5c9f89c101232c1d41297d67/t/5d7942615c8d7e4106ee10d7/1568227954088/MULTIPHYSICS+2017+-+Abstracts.pdf
Brunner, Daniel, Klaus Häusler, Sunil Kumar, Gernot Kurt Boiger, Hassan Abbas Khawaja, and Moji Moatamedi. 2017. “FSI of Viscosity Measuring Mechanical Resonators : Theoretical and Experimental Analysis.” Conference poster. In Multiphysics 2017. International Society of Multiphysics. https://doi.org/10.21256/zhaw-3682.
Brunner, Daniel, et al. “FSI of Viscosity Measuring Mechanical Resonators : Theoretical and Experimental Analysis.” Multiphysics 2017, International Society of Multiphysics, 2017, https://doi.org/10.21256/zhaw-3682.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.