Publikationstyp: Konferenz: Sonstiges
Art der Begutachtung: Peer review (Abstract)
Titel: Multiscale-multiphysics model for novel ceramic solid oxide fuel cell electrodes
Autor/-in: Marmet, Philip
Holzer, Lorenz
Hocker, Thomas
Boiger, Gernot Kurt
et. al: No
Angaben zur Konferenz: 18th International Conference of Multiphysics, Graz, Austria, 14-15 December 2023
Erscheinungsdatum: 15-Dez-2023
Sprache: Englisch
Schlagwörter: Multiphysics-multiscale modelling; Effective microstructure property; Solid oxide fuel cell; Porous ceramic composite electrode; Mixed ionic and electronic conductor (MIEC)
Fachgebiet (DDC): 621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnik
Zusammenfassung: Solid oxide fuel cell (SOFC) technology is a promising solution for the on-demand supply of electrical energy using synthetic gas or biogas (or natural gas) as input. To significantly improve on the unavoidable degradation of state-of-the-art anodes like Ni-YSZ, we elaborate on fully ceramic composite electrodes, which are based on mixed ionic and electronic conductors (MIEC) like doped ceria and perovskite (e.g., titanate) materials. To accelerate the development of these novel electrodes, a Digital Materials Design (DMD) framework for the systematic and model-based optimization of MIEC SOFC-electrodes is elaborated. In our DMD approach we combine stochastic microstructure modeling, virtual testing of 3D microstructures and a multiscale-multiphysics electrode model to explore the available design space by performing parametric studies. The multiphysics electrode model is thereby used to predict the impact of a virtual microstructure variation on the electrode performance. The model captures all the relevant physico-chemical processes involved like the transport of charge carriers in the two MIEC solid phases, transport of the gas species in the pore-phase (described by the dusty-gas model) and the reaction kinetics (calibrated to the experimental performance characterization of the cells). A special emphasize is laid to the appropriate description of the microstructure effects. Thereby, a 1D FEM continuum model implemented in Comsol Multiphysics is used to describe the electrode on a button cell level. The microstructure effects are then captured using effective transport and interface properties, determined from 3D microstructure data. The model results are validated on experimental performance characterizations of the button cells (e.g., EIS results). This model-based performance prediction enables to establish the relationship between materials choices and compositions, fabrication parameters, microstructure properties and cell-performance. This approach is thus capable to explore a much larger design space than it would be possible with experimental methods only.
URI: https://digitalcollection.zhaw.ch/handle/11475/30170
Volltext Version: Publizierte Version
Lizenz (gemäss Verlagsvertrag): Lizenz gemäss Verlagsvertrag
Departement: School of Engineering
Organisationseinheit: Institute of Computational Physics (ICP)
Publiziert im Rahmen des ZHAW-Projekts: GeoCloud – Simulation Software for Cloud-based Digital Microstructure Design of New Fuel Cell Materials
Versatile oxide fuel cell microstructures employing WGS active titanate anode current collectors compatible to ferritic stainless steel interconnects (VOLTA)
Enthalten in den Sammlungen:Publikationen School of Engineering

Dateien zu dieser Ressource:
Es gibt keine Dateien zu dieser Ressource.
Zur Langanzeige
Marmet, P., Holzer, L., Hocker, T., & Boiger, G. K. (2023, December 15). Multiscale-multiphysics model for novel ceramic solid oxide fuel cell electrodes. 18th International Conference of Multiphysics, Graz, Austria, 14-15 December 2023.
Marmet, P. et al. (2023) ‘Multiscale-multiphysics model for novel ceramic solid oxide fuel cell electrodes’, in 18th International Conference of Multiphysics, Graz, Austria, 14-15 December 2023.
P. Marmet, L. Holzer, T. Hocker, and G. K. Boiger, “Multiscale-multiphysics model for novel ceramic solid oxide fuel cell electrodes,” in 18th International Conference of Multiphysics, Graz, Austria, 14-15 December 2023, Dec. 2023.
MARMET, Philip, Lorenz HOLZER, Thomas HOCKER und Gernot Kurt BOIGER, 2023. Multiscale-multiphysics model for novel ceramic solid oxide fuel cell electrodes. In: 18th International Conference of Multiphysics, Graz, Austria, 14-15 December 2023. Conference presentation. 15 Dezember 2023
Marmet, Philip, Lorenz Holzer, Thomas Hocker, and Gernot Kurt Boiger. 2023. “Multiscale-Multiphysics Model for Novel Ceramic Solid Oxide Fuel Cell Electrodes.” Conference presentation. In 18th International Conference of Multiphysics, Graz, Austria, 14-15 December 2023.
Marmet, Philip, et al. “Multiscale-Multiphysics Model for Novel Ceramic Solid Oxide Fuel Cell Electrodes.” 18th International Conference of Multiphysics, Graz, Austria, 14-15 December 2023, 2023.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.